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ABSTRACT

Structural magnetic resonance imaging (sMRI) has become a prevalent and potent imaging modality
for the computer-aided diagnosis (CAD) of neurological diseases like dementia. Recently, a handful of
deep learning techniques such as convolutional neural networks (CNNs) have been proposed to diagnose
Alzheimer’s disease (AD) by learning the atrophy patterns available in sMRIs. Although CNN-based tech-
niques have demonstrated superior performance and characteristics compared to conventional learning-
based classifiers, their diagnostic performance still needs to be improved for reliable classification re-
sults. The drawback of current CNN-based approaches is the requirement to locate discriminative land-
mark (LM) locations by identifying regions of interest (ROIs) in sMRIs, thus the performance of the whole
framework is highly influenced by the LM detection step. To overcome this issue, we propose a novel
three-dimensional Jacobian domain convolutional neural network (JD-CNN) to diagnose AD subjects and
achieve excellent classification performance without the involvement of the LM detection framework. We
train the proposed JD-CNN model on the basis of features generated by transforming the sMRI from the
spatial domain to the Jacobian domain. The proposed JD-CNN is evaluated on baseline T1-weighted sMRI
data collected from 154 healthy control (HC) and 84 Alzheimer’s disease (AD) subjects in the Alzheimer’s
disease neuroimaging initiative (ADNI) database. The proposed JD-CNN exhibits superior classification

performance to previously reported state-of-the-art techniques.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is one of the most common type of
neurodegenerative dementia that primarily impairs the function of
brain neurons and its subsequent progression hampers cognitive
reasoning [1]. It is reported that 5.8 million Americans were living
with AD in 2019 and its prevalence has increased by 145% from
2000 to 2017 [1]. On a global scale, it has affected millions of peo-
ple worldwide and the number of affected patients is expected to
increase in the future. Early AD detection is often associated with
amnesiac symptoms, but the quickest way to diagnose AD at the
earliest stage is to measure brain atrophy, as amnesiac symptoms
appear after brain cell atrophy has already occurred [2]. Success-
ful early diagnostic assessments enable experts to adopt appropri-
ate procedures in the initial stages of the disease which results
in effective medication trials [1]. The earliest stage symptoms in-
clude deterioration in analytical skills and memory [1]. During this
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early stage, the atrophic process starts to affect the brain’s neuron
structure which ultimately leads to fully developed AD [3]. Many
non-invasive measures, like structural magnetic resonance imaging
(sMRI), functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) etc., are available for AD diagnosis [4].
SMRI is quite popular among these available measures because it
exhibits exceptionally high tissue contrast and excellent spatial res-
olution, which results in identifying minute structural changes as-
sociated with brain cells to detect AD and its prodromal stages
with the help of computer-aided diagnosis (CAD) [5].

To quantify the structural changes in sMRI related to AD sub-
jects, it is necessary to analyze variations in the structure of dis-
eased brain tissue. These variations are quantified using conven-
tional learning-based (CLB) and deep learning-based (DLB) tech-
niques. CLB techniques normally extract handcrafted features such
as gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),
cortical thickness and volume changes from sMRI data and employ
them to train support vector machines (SVMs) or machine learn-
ing algorithms like random forest and linear SVM. The drawback
of these techniques is the lack of coordination between features
and the selected classifier, resulting in the degraded performance
of the classification algorithms [6]. Recently, DLB techniques have
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demonstrated superior performance in AD/HC classification tasks
by incorporating powerful convolutional neural networks (CNNs),
which have demonstrated great success in image classification.

The drawback of current CNN-based approaches is the require-
ment to locate discriminative landmark (LM) locations by identi-
fying regions of interest (ROIs) or biomarkers [7] in sMRIs, thus
the performance of the whole framework is highly influenced by
the LM detection step. A wrongly detected LM may put the whole
classification algorithm in jeopardy. The lack of a relationship be-
tween LM detection and classifier construction is also one of the
hinderances in demonstrating the high performance of AD classifi-
cation schemes. In addition, the LM detection step requires domain
knowledge which is not available most of the time. To overcome
these challenges, we propose a whole brain subject-level AD clas-
sifier with high performance characteristics.

In this paper, we propose a novel DLB framework that feeds
whole brain Jacobian domain features at the subject-level to CNN
to diagnose AD subjects, which neither identify any ROI region nor
extract any 3D brain patches for classification. The proposed algo-
rithm is a stepping-stone to accomplish CAD-based AD classifica-
tion and autonomous diagnosis.

The proposed novel Jacobian domain convolutional neural net-
work (JD-CNN) framework consists of three broad stages, namely:
(i) preprocessing; (ii) Jacobian map generation; and (iii) the CNN.
The standard pre-processing operation involves four sub-steps,
namely: (i) anterior commissure (AC) posterior commissure (PC)
alignment correction, (ii) intensity correction, (iii) skull stripping
and (iv) image registration. Further, the pre-processed images are
utilized to compute the Jacobian determinant maps, which pro-
vides a quantitative measure to identify the atrophy patterns as-
sociated with AD. The Jacobian domain (JD) transformation com-
putes linear approximation of brain matter at each voxel of sSMRI.
First, a 3D Jacobian matrix is computed from 3D spatial domain
(SD) sMRI. This Jacobian matrix is then employed to calculate a Ja-
cobian determinant at each voxel and the new resultant matrix is
called the Jacobian map. One of the characteristics of the Jacobian
map is to provide a volumetric ratio of approximate localized at-
rophy patterns to the original un-atrophy pattern available in SD
images and hence the measure of volumetric change is recorded
[8]. Consequently, when there is no localized volumetric change in
an SD image then the corresponding voxel values in the JD im-
age are equal to unity and vice versa. In this way, the analysis of
the JD image reveals the localized anatomical brain degeneration
patterns due to volumetric changes in sMRI of AD subjects [9].
Ye et al. [10] have also employed Jacobian determinants to track
localized myocardium motion for quantification the motion field.
We demonstrate the supremacy of JD features over SD features for
AD/HC classification in this work. The JD maps are subsequently
exploited to train the CNN classifier, while the trained CNN classi-
fier provides AD vs. HC classification. In the experiments, the train-
ing, validation and testing of the JD-CNN is performed on the sMRI
data collected from the ADNI database [11]. The experiment results
show the superior performance of the proposed algorithm against
previously reported state-of-the-art classification schemes. Follow-
ing are the main contributions of this paper.

* We propose a novel ]D-CNN architecture which exploits the JD
features to train a three-dimensional CNN for AD classification.
The CNN training in JD improves the efficiency of CNN features
to increase the classification performance because the JD inher-
ently captures the localized volumetric transitions at the voxel
level, which is key to identify sMRI patterns associated with AD.

o We study the effect of JD features over classifier performance.

o We develop a classifier which does not require any discrimina-
tive landmark detection and extraction strategy, resulting in the
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reduced computational complexity of the classification frame-
work.

The remainder of the paper is organized as follows. In Sec-
tion II, a concise review of the previously reported AD classifica-
tion algorithms employing sMRI is presented. In Section III, the
demographics of the studied material and the adopted preprocess-
ing pipeline for homogenizing the dataset is elaborated. Section IV
describes the methodology to generate Jacobian features and the
proposed CNN architecture. In Section V, the performance of the
proposed JD-CNN is evaluated and compared with state-of-the-art
algorithms. Section VI describes the differences between the pro-
posed JD-CNN and the previously reported algorithms for AD vs.
HC classification, and finally Section VII concludes the paper.

Algorithm 1, Algorithm 2

2. Related work

In this section, a concise description of the existing sMRI-based
classification schemes is provided. The previous studies are di-
vided into two broad categories: namely conventional learning-
based (CLB) and deep learning-based (DLB) techniques.

2.1. Conventional learning-based techniques (CLB)

Traditionally, CLB technique features are generated by quantify-
ing structural changes linked with the brain’s density maps, surface
area and regions [12]. Typically, density map-based approaches
employ gray matter (GM), white matter (WM), cerebrospinal fluid
(CSF), cortical thickness, volume change or a combination of any
of these to quantify changes in the brain’s structure associated
with atrophic process due to the progression of AD. Usually, the
GM, WM and CSF maps are generated by means of voxel-based
morphometry (VBM). Moller et al. [13] proposed a VBM-based AD
framework that classified AD patients by analyzing GM density
maps and incorporating an SVM classifier. Normally, the VBM ap-
proaches suffer from the generalization problem due to high di-
mensional sMRI data with millions of voxels. To overcome the
overfitting hurdle, dimensionality reduced density maps were gen-
erated for AD classification. Salvatore et al. [14] employed princi-
ple component analysis (PCA) for dimensionality reduced WM and
GM density maps. Due to the classifier’s over-dependence in the
dimensionality reduction step, it may be a bottleneck in develop-
ing VBM-based high-performance classifiers.

Surface area-based approaches exploit alterations in the brain’s
temporal and parietal regions of the cortical surface. In any classi-
fication framework, the surface area plays the same role as the lo-
calized volumetric data in the density map. Li et al. [15] computed
cortical surface morphological features from all vertices to develop
an SVM-based classifier. The high-dimensional surface area-based
approaches suffer from a similar generalization problem as density
map-based classifiers and these types of algorithms also require
dimensionality reduction approach to avoid overfitting. Park et al.
[16] proposed an SVM-based AD classifier by adopting cortical
thickness and sulcal depth in terms of three dimensional meshes
which employed PCA-based dimensionality reduction mechanism.

Region-based approaches take advantage of the features gen-
erated from specific brain regions. The brain regions are either
pre-defined based on histological prior studies or anatomical brain
atlases. Liu et al. [17] proposed a relationship-induced multi-
template learning method such that every single image in the
dataset is non-linearly registered onto multiple pre-selected atlases
using spatial normalization to extract regional features. These fea-
tures are subsequently utilized to develop ensemble classifiers for
AD diagnostics. These types of techniques have a degraded perfor-
mance possibly due to heterogeneities between the generated fea-
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Algorithm 1
Pre-processing operations to homogenize dataset.
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Input: Input image I from ADNI-1 database.

Output: G4r (affine registered image).

: Transform [ to PIL orientation;

: Identify AC and PC positions of I using pretrained model;
: Apply rigid transformation to correctly align ACPC line;

: Inverse transform I from PIL orientation;

0N U A WN =

9: Distribute all intensities around Ty by ensuring o = 1;

:FORi=0to N do // N is the total number of selected images for this study
: Compute a flipped version (F) of input image (I); //ACPC correction starts here
: Determine MSP of I using equation (2) in such a way that equation (1) yields maximum symmetric image plane;

: Shift image intensity from T, to Tpew. Intensity correction; //Intensity correction starts here

10: Fit intensity corrected image over a standard template SRI24 to calculate Ry transformation and Irs; //Skull stripping starts here

11: Igs is segmented into GM, WM, and CSF;

12: Fuse the generated GM, WM and CSF segments of to get Iyy;

13: Map Iuy to Izs for generating skull stripped image;

14: Map skull stripped image to standard Colin27 template; //Image registration starts here

15: Generate Gur using equation (3);
16: END

Algorithm 2
Proposed JD-CNN.

Input: G4r (affine registered images).

Output: Predicted binary class labels j.

1: FOR p=0to N do // N is the total number of G, images

2: Initialize a null matrix J; having dimensions 181 x 217 x 181 to store Jacobian map corresponding to Gar.
3: FOR q =0 to V47 do [ Var is the total number of voxels in Gar

4: Jy < VuU(ig, Jo, ke)g,,) /| using equation (4)

5: |Jy| < det(Jy) /| using equation (5)

6: Jr < Jr ULl |/ store |Jy| scalar value to 3D J; matrix
7: END

8: END

9: Initialize Sequential model, three convolutional, three max-pooling, a flatten, a fully connected and an output layer.

10: FORr =0 to N do
x3x3

11: G = {C1, G, ..., C16}3 < conv3Dis (Jp) [/where G e R¥*W*W and params #448

12: MPse > 2 *max- pooling(Cist)

13: Gua = (G, Gy ..., G} *2" ® conv3Dyny (MPr) |/ Params #64,032

14: MPyg* 2" *max- pooling(Cyna)

7 x 7 x
15: Cpg ={C1, G, ..., Coy} <
16: MPyyq” 2 >max- pooling(Csr)
3D to 1D

17: FD™ < "~ flatten data(MPs.q)

18: D={Dy, D,, ..., Dig} < dense(FD) || Params #2064

19:y <« ¢(D) /| Params #34
20: END

7conv3D3rd (MPy,q) || Params #702,528

tures and adopted classifiers. Another possible reason for demon-
strating sub-optimal learning performance is that the hand-crafted
features generated from sMRIs to build suitable classifiers do not
coordinate well with the classification framework [18]. Hence, deep
learning-based approaches emerge to help achieve superior clas-
sification performance due to the unification of the hand feature
extraction stage and corresponding classifier.

2.2. Deep learning-based techniques (DLB)

Recently, numerous deep learning-based (DLB) techniques
(specifically CNNs) have been proposed to classify AD affected sub-
jects. The deep CNNs are employed to generate the feature space
for disease classification. Three-dimensional (3D) DLB classifiers
are divided into the following three categories, depending on the
nature of the employed features: (i) patch-based, (ii) ROI-based,
(iii) subject-based.

Patch-based DLB approaches extract 3D patches from sMRIs
[19]. Lian et al. [20] proposed a patch-level classifier that automat-
ically extracts image patches around the LM locations available in
sMRI data by exploiting a weakly-supervised learning methodol-
ogy and then computing group comparisons between HC and AD
samples to train their ensemble network. Their framework em-

ployed non-linear registration to build voxel-wise anatomical cor-
respondence between different subjects, which is computationally
expensive and a hinderance in developing a time efficient clas-
sifier. Liu et al. [21] demonstrated the efficiency of a landmark-
based CNN technique by extracting image patches around pre-
defined landmark locations. These image patches are then utilized
to train a CNN model. The drawback of their technique is that each
DenseNet is independently trained and hence it is challenging to
optimize the complete framework. The main limitation of patch-
level DLB frameworks is their complexity. In these approaches, nor-
mally each patch is independently input to train sub-networks,
called patch-level sub-networks. The outputs from these patch-
level sub-networks are subsequently fused and retrained at region-
level and subject-level sub-networks respectively [19].

ROI-based approaches extricate 3D patches only from the spe-
cific informative brain parts, unlike patch-based algorithms which
slice whole or LM identified brain parts into patches. The rationale
of employing the ROI-based approach is that all patches extracted
through patch-based schemes do not necessarily contain atrophy
patterns and hence their selection is not worthwhile [19]. Nor-
mally, the ROI-based classifiers focus on those brain parts which
have demonstrated comparatively higher levels of atrophic degra-
dations due to the progression of AD, resulting in maximizing the
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ACPC alignment
images corrected images images
() (b) (c)

Intensity corrected

Skull stripped Colin 27 Affine linear
images Template registered images

(U] (e) (H

Fig. 1. Illustration of pre-processing operations to homogenize the dataset. (a) Original image with misaligned ACPC line (indicated by dotted yellow line). (b) Orientation
corrected version with horizontal ACPC line. (c) Effect of intensity correction. (d) Extraction of brain tissue. (e) A skull stripped Colin27 template for image registration. (f)

Affine linear registered image after removing global inconsistencies.

group difference between AD and HC. Typically, the ROIs are se-
lected on a priori basis. Another advantage of the ROI-based ap-
proaches is the reduction in the complexity of the framework due
to fewer volumetric ROI-based patches. Lin et al. [22] proposed a
hippocampus-based classification framework, which performed a
deformable registration of hippocampus as part of the image pro-
cessing block to link voxel-wise correspondence between different
entities and then extracted 151 patches from each image for in-
putting to the classifier. The chief drawback of these frameworks
is the selection of only a specific or a handful of ROIs to identify
AD patterns, while the atrophic process occurs in the entire brain
and not just in some specific isolated brain regions. Another limi-
tation of this approach is the identification of localized discrimina-
tive brain regions in the sMRI before training any network/model,
which affects the performance of the classification framework and
eventually, the diagnostics becomes unreliable.

Both the patch-based and ROI-based classification frameworks
lack whole-brain spatially-correlated information. To overcome this
limitation, a subject-based framework [23, 24] is designed which
takes the whole-brain image as input at once. This type of frame-
work performs subject-level classification. Wang et al. [23] re-
ported an ensemble whole-brain classification framework with the
help of 3D CNN layers. The framework included dense blocks be-
tween CNN layers to maximize the information flow. Basaia et al.
[24] proposed a classifier without any feature engineering and its
performance was not affected by heterogeneities in the imaging
scanner. The details of the adopted procedures and their corre-
sponding parameters were not reported [24]|. Wen et al. [19] ana-
lyzed the classifiers reported in [23, 24] and concluded the preva-
lence of data leakage in these frameworks. The data leakage phe-
nomenon refers to any of the following four main concerns (i)
wrong dataset split, (ii) late split, (iii) biased transfer learning and
(iv) absence of an independent test set [19]. Lian et al. [25] devel-
oped an end-to-end DLB classifier for the joint regression of multi-
ple clinical scores. The results were comparatively better but might
not be precise enough for AD diagnosis.

The key concerns regarding subject-based DLB approaches is
the lack of explanation about adopted preprocessing procedures
and the prevalence of data leakage reported in [19], which ham-
pers the diagnostic performance of unseen test datasets. The lack
of a preprocessing explanation means the absence of motivation
behind its adaptation or a lack of technical information due to its
in-house development.

We developed a novel transformed domain whole-brain
subject-level AD classification algorithm that may not have any

data leakage. In addition, we provide a detailed explanation of the
adopted preprocessing procedures for reproducible evaluation.

3. Preprocessing

Structural magnetic resonance imaging (SMRI) modality re-
quires certain specific preprocessing operations before they can be
utilized in a relevant classification algorithm for diagnostic pur-
poses. We implemented a standard preprocessing pipeline to uni-
formize images across a complete dataset. The uniformization pro-
cess is necessary to harmonize sMRIs across all dataset images.

We adopted four standardized pre-processing operations,
namely: ACPC alignment correction for identical orientation, inten-
sity correction for uniform homogeneity, skull stripping to extract
brain tissue and image registration for geomatic alignment. The
complete preprocessing flow diagram is shown in Fig. 1. We ex-
ploit structural equation modeling (SEM) tools available under the
Nipype interface [26] for ACPC alignment and intensity correction,
skull stripping is performed by employing Insight Toolkit (ITK) [27],
while image registration is accomplished with the help of advanced
normalization tools (ANTs) [28].

3.1. Dataset

The performance of the proposed JD-CNN algorithm is evalu-
ated on baseline T1-weighted sMRI data collected from 154 healthy
control (HC) and 84 AD subjects from an Alzheimer’s disease neu-
roimaging initiative-1 (ADNI-1) database [11]. The images included
in this study are captured by a scanner with a magnetic field
strength of 3T, so the spatial and voxel resolutions are not uniform
across all dataset images. The minimum and maximum spatial res-
olutions of the studied images are 240 x 256 x 160and256 x 256 x
170 respectively, while the voxel resolutions are presented in Table
S-1 in the supplementary material.

The repetition time (TR) and echo time (TE) of the scanner dur-
ing sMRIs acquisition are 6.802 ms and 3.158 ms respectively [11].
The selection of these specific images from the ADNI-1dataset is
based on the following three conditions:

o Eyes in the MSP aligned image must be lower than the AC point
in a superior-inferior direction.

o The physical distance between the left and right eye must be at
least 40 mm.

e The non-zero norm for a bounding area which means that the
algorithm doesn’t converge, and the resulting ACPC points are
not located precisely.
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TABLE 1
Demographic information of 238 studied subjects from ADNI-1 database.
Category  Diagnostic group  Subject count  Gender(M/F)  Age (Years) Education (Years) = MMSE ADAS-11 DIGITSCOR
Training ~ HC 02 31/61 75.88+£03.99  15.95+1.90 29.13+0.75 06.18+02.64  48.55+09.12
AD 51 15/36 73.49+08.04 13.86+2.46 2142+3.88 21.31+08.15  27.01+12.67
Validation HC 31 13/18 7525+03.77 1653 +1.52 2928+050 06.46+02.46  51.41+06.82
AD 16 05/11 73.65+09.25 1518 £3.13 21.87+3.61  19.25+7.52 30.89 + 13.40
Testing HC 31 14/17 75.61+03.95  16.07 +1.96 29.16+0.73  06.18 +2.46 47.12 4+ 09.89
AD 17 07/10 73.55+05.73  14.64+3.14 21.05+3.79 22.18+6.74 26.99 + 11.89
The division of subjects into HC and AD categories is based on X 106
standard clinical criteria, including the mini-mental state examina- 6 ACPC aligned
tion (MMSE) score, Alzheimer's disease assessment scale (ADAS-11) = 5\ Intensity correction {———+———
which includes 11 subject participation tasks and the digit symbol 34 7\7 i EE ;
total correct (DIGITSCOR) score. We also ensure that all images of % 3
a subject are assigned to a single category and must not split to S o |m\ e
others, for example, if one image of a subject is assigned to the = 1 \
training category, then all other available images of that subject, o &

which are taken at some other time frame, must also be assigned
to the training category. In addition, we ensure that the duplicate
sMRI samples must also be removed from the selected data.

The proposed model is trained, validated, and tested on a set of
143,47 and 48 images respectively. The selection of subjects in the
specific diagnostic group is performed randomly. The demographic
information of the 238 studied subjects from the ADNI database is
reported in Table 1.

3.2. ACPC alignment correction

The AC and PC are both WM tracts that link the cerebral hemi-
spheres of the brain. However, there is a potential alignment prob-
lem with the original dataset images. The obstacle is that the im-
ages are not oriented in an identically uniform manner, which af-
fects the diagnosis efficiency of any classification scheme. To re-
solve this issue, Ardekani et al. proposed a two-stage methodology
[29, 30] that corrects the orientation of 3-dimensional MRI images.
The proposed scheme [29] tries to align the image into a maximum
symmetric plane by calculating the cross-correlation between two
halves of a single image. In the first stage, the algorithm takes the
unoriented image (I) as input and mirrors this image across the
plane to obtain a flipped version of I as F. The cross-correlation
computational function s(I, F) between I and F is represented by

(1).
i 25 T (g — 1) (Fijee — 1))
\/Zi 252k ((Iijk _ ﬂ/)2> PSP <(Fijk B W’)2>
(1)

where I is the original input image, @’ is the mean value of I, F is
the flipped version of I and p” is the mean value of F, while i, j
and k represent three dimensions of an MRI. Both the AC and PC
locations normally lay over the mid-sagittal plane (MSP) and the
MSP in the image is generically represented by Eq. (2) [30].

Xi+Yj+2Z, =1 (2)

where X;, Y; and Z; represent a unique set of parameters to char-
acterize a three-dimensional plane containing MSP. The three un-
known factors X;, Y; and Z; need to be calculated to correctly iden-
tify MSP and they are computed by optimizing Eq. (2) in such a
way that Eq. (1) produces the maximum value to acquire the max-
imum symmetric plane [29]. Then, the images are transformed to a
posterior-inferior-left (PIL) orientation by ensuring that MSP aligns
along the x = 0 plane.

In the second stage, a model-based approach [30] is used where
a model is trained with the already identified AC and PC locations.

s(ILF) =

T 10 _Tnew 100 255
Gray scale bins

Fig. 2. Effect of intensity correction over the image histogram of an arbitrary HC
sMRI. The black and red lines indicate the voxel distribution before and after inten-
sity correction. The mean voxel value is shifted from Ty, to T, after homogenizing
the intensity distribution.

The dataset images are fed into the trained model to identify the
approximate locations of the AC and PC points. Subsequently, a
small number of perturbations in the form of translation and ro-
tation are applied to align AC and PC locations along MSP. A linear
rigid transform is utilized to ensure the ACPC line is parallel to
the z-axis (i.e. posterior in PIL) of the input image, the subject’s
feet align to the y-axis (i.e. inferior in PIL), and the MSP aligns it-
self along the x = 0 plane. In an unaligned image, the straight line
joining AC and PC locations make some angle (6) with the z-plane
(i.e. posterior in PIL and shown as the yellow dotted line in Fig. 1).
The correctly aligned brain image in the PIL orientation forms an
angle 6 = 0° with the posterior axis. In this way, all the dataset
images are aligned with a uniform orientation. Finally, an inverse
PIL transformation is calculated and applied to transform the im-
age back to its original axis without changing its spatial resolution.

3.3. Intensity correction

The MRI images do not exhibit uniform homogeneity across the
whole dataset, and it changes evenly within an image. This non-
uniformity contributes to variations in images and is quite negligi-
ble for visual inspection. This type of inconsistency in images does
not contribute to any diagnoses challenge for domain experts but
affects the performance of CAD significantly. To resolve this prob-
lem, intensity correction must be performed for each individual
image to achieve uniform homogeneity across all images included
in study. This step enables CAD frameworks to exhibit better clas-
sification performance.

MRI data suffers from image inhomogeneity and hence voxel
values differ appreciably from one image to another with the same
characteristics. To resolve this problem, image intensity distribu-
tion is rescaled for each sMRI of the dataset by shifting its mean
intensity T, to a new value Ty in such a way that the standard
deviation o comes out as unity without changing its spatial resolu-
tion. The effect of intensity rescaling is evident from Fig. 2 where
the majority voxel values of the ACPC aligned image reside very
close to the origin and the mean intensity of the ACPC corrected
image is Ty, while after intensity rescaling, the mean intensity is
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Fig. 3. Illustration of SRI24 template-based skull stripping, which strips non-brain
tissue from the image.

shifted to Tpew and all other intensities are distributed by ensuring
o=1.

3.4. Skull stripping

The process of effectively segmenting brain tissue (cortex and
cerebellum) from a non-brain structure (e.g. skull and eyeballs
etc.) is called skull stripping. The resultant image contains only
brain matter, while all non-brain matter is filtered out. This pro-
cess helps all CAD frameworks to focus on the brain structure re-
sponsible for the AD while non-brain matter does not contribute
any significance for diagnoses procedures.

An atlas-based skull stripping technique is used in this step
which employs a standard SRI24 template image [31] to distin-
guish and separate brain tissue from non-brain tissue. SRI24 is an
MRI-based atlas of normal adult human brain anatomy, generated
by template-free nonrigid registration from images of 24 HC sub-
jects [31]. The ages of all 24 subjects involved in template gener-
ation are different. As there are 24 different age groups, the adult
brain template which is formed has more generality across all age
groups. The youngest and oldest persons are aged 19 years and 84
years respectively [31]. The SRI24 atlas is generated from images
acquired from a scanner with a magnetic field strength of 3T [31],
and our studied dataset is also collected from a 3T scanner. More-
over, the 3T scanner exhibit improved tissue contrast compared to
1.5T, which results in an efficient skull stripping operation. Hence,
the SRI24 atlas is preferred over other available atlases in this step.

The standard template is fitted over each intensity-corrected
image to calculate a rigid registration function (Ry) and acquire a
registered atlas version Ig4 of the input sMRIL. The R; only allows
rotation and translation operations, and is utilized for segmenting
the image into GM, WM and CSF which are fused to produce an
atlas mask Iy, for brain tissue. Then, the I4) is mapped to Igs to
generate a skull stripped image. The complete skull stripping pro-
cess is depicted in Fig. 3.

It is important to note that this step utilizes a template to iden-
tify brain tissues. This step must not be confused with the regions
of interest (ROIs)-based approach, where specific ROIs (i.e. specific
brain regions) are extracted from brain images and fed to the clas-
sifier, whereas we extract whole brain images and do not rely on
any specific ROL

3.5. Image registration

This step involves a 3-dimensional image registration by utiliz-
ing affine transformation (AT) which registers a skull stripped im-
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Fig. 4. Illustration of arbitrary voxel mapping from I to I; for image registration to
produce I, with the help of the mattes cost function. (a) Skull stripped sMRI. (b)
Standard Colin 27 template sSMRI (c) Affine linear registered sMRI. The red cube
indicates the voxel before AT, the green cube indicates the corresponding template
voxel and the blue cube indicates the registered version of the red voxel.

age to a skull stripped Colin27 template space [32] with a spatial
resolution of 181 x 217 x 181 voxels. The procedure to perform
skull stripping of a standard Colin27 template is the same as ex-
plained in section 3.4. In other words, the skull stripped Colin27
template is aligned to the SRI24 template space and the AT can
only perform shearing and scaling operations. The Colin27 atlas is
preferred in this step because it demonstrates an overlap score of
0.414 compared to SRI24’s 0.412 for equally weighted AFFINE reg-
istration [31]. The higher overlap score motivates us to utilize the
Colin27 atlas for spatial normalization.

AT is a linear transformation that preserves the structure of the
image space and induces only geometric distortions by transform-
ing DS — DARS, where D and DARS both represent computational
spatial domains before and after AT. Let I; = I(i, js, ks) be the spa-
tial domain value of one of the voxels vs in the skull stripped im-
age, Ir = I(ir, jr, kr) be its transformed value, and I; = I(i;, ji, k;) be
the value in the standard template space. This step transforms the
position of Iy by changing its positional vectors from (i, js, ks) to
(ir, jr, kr) according to (i, j¢, k) over a computational spatial do-
main DS using mattes as a cost function and is represented by Eq.

(3).
Gar € |l : Iy > I, VI e D* 3)

where Gur is an AT image that contains all voxels of a skull
stripped image in a new vector space (ir, jr, kr). The affine trans-
formed vector space (ir, jr, kr) is in alignment with a standard
template space (i, ji, k) where I(ir, jr, kr) € Gay — DARS. The map-
ping of an arbitrary voxel Iy to I; to acquire I is illustrated
in Fig. 4.

Affine registration is utilized to remove scale anomalies across
complete datasets by registering each image to a standard tem-
plate. In addition, this process also changes the spatial resolution
of images to 181 x 217 x 181 voxels as well as resamples all images
to acquire uniform voxel resolution of 1 x 1 x 1 mm?3.
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4. Proposed 3D Jacobian domain convolutional neural network

The pre-processed images are transformed to the Jacobian do-
main to generate a Jacobian determinant map, which is utilized
to train a CNN model. Recently, Ye et al. [10] investigated the
tracking of regional myocardium motion on cardiac tagging MRI
scans. The authors utilized Jacobian determinant maps as evalua-
tion metrics for quantifying the motion field orientation to mea-
sure its smoothness, perseverance and bijectivity through unsuper-
vised deep learning. Styputkowski et al. [33] employed Jacobian
determinants to fulfill the tractability requirement of normalizing
flows for developing a conditional flow-based point cloud genera-
tor. Spasov et al. [34] exploited Jacobian maps to develop a multi-
modal framework which quantified local volumetric transitions as-
sociated with AD. These studies [10, 33, 34] motivate us to take ad-
vantage of Jacobian determinant maps for quantifying voxel-level
volumetric transitions associated with AD through a deep learning-
based framework. The conversion of the image from the spatial do-
main to the Jacobian domain is performed using ANTs [28] through
non-geometric parameter settings. The implementation details and
the proposed architecture are explained in this section.

4.1. Feature extraction

The affine registered images Gur from the previous pre-
processed stage are used to generate Jacobian maps |Jf|, which
are subsequently utilized to train the proposed convolutional net-
work. The |J¢| quantifies changes in the brain’s volumetric tissue
in an sMRI. These changes are key to monitoring the anatomical
alterations in the brain’s structure and transfiguring all volumetric
variations into meaningful transitions, which can be exploited to
detect and classify AD patterns.

Let a function v that maps all voxels V4r in Gar be defined in

affine transformed vector space (ir, jr, kr) to a grid of (i, js, ks) po-
sitional vectors. The first order partial derivative of v can be ex-
pressed as Vv. The Vv transforms the image domain: DARS — DJ,
where D/ represents the Jacobian domain of sMRI. This transfor-
mation function computes Vv at each voxel of G4 with respect
to is, js and ks. The Vv forms the Jacobian matrix (Jy) such that
Jy €D and J, for an arbitrary voxel I can be represented by Eq.
(4).
Jo < Vud(is, js ks)) = [ ng: ngi 36%5 ] (4)
where v lies in the 3-dimensional plane, so it can be decomposed
into basis functions v = virf+ vjrf+ vkrf(, where i, j and k are the
unit vectors along x, y and z directions. The determinant of J, can
be computed using Eq. (5).

v, v, v,

aais Bd.ls g"s

— | %Yr Vjr Vjr
U”' | 9is Jjs ks (5)

Vg, Vg, Vg,

s djs ks

The |Jy| in (5) is called a Jacobian map for an arbitrary voxel
Is and is a quantitative factor to record the type of deformations
Dy incorporated by the image registration step. The value of Dr
indicates the type of volumetric transition as illustrated in Eq. (6).

volume compression if |J,| < 1;
Dy = { volume expansion if |J,| > 1; (6)
no change if Jy| = 1.

The value of Dy identifies the brain’s volume change at voxel
level and provides the main reason of employing JD features. The
first two conditions of Eq. (6) indicate the compression and expan-
sion of a single voxel volume respectively, while the third condi-
tion triggers when |Jy,| stays unity and in return highlights the fact
that there is no change in the voxel volume. The total number of
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Fig. 5. Illustration of an arbitrary sMRI transformation from spatial domain (SD) to
Jacobian domain (JD). JD captures structural changes associated with the AD pat-
terns. (a) Affine transformed (AT) image in SD (b) JD image exhibiting voxels which
strictly follow the conditions |J,| # 1.

|Jv| in a single brain image are equal to the total number of voxels
available in it. Each voxel in Gar is replaced with its correspond-
ing |Jy| to form Jy. The three conditions listed in Eq. (6) play a
major role in developing a high-performance CNN-based classifier.
The computation of J is a linear process and does not change the
dimensions of the image. Hence, the dimensions of the sMRI after
JD conversion are identical to the AT image (i.e. 181 x 217 x 181).
As an example, the effect of JD transformation for an arbitrary AD
patient is illustrated in Fig. 5, where Fig. 5(a) and Fig. 5(b) repre-
sent the AT image in SD and its corresponding ]JD transformed ver-
sion respectively. Fig. 5(b) illustrates voxels which strictly follow
the condition [Jy| # 1. We exclude voxels that satisfy the [Jy| =1
condition, because we want to highlight the brain regions which
have undergone localized volumetric change and avoid predomi-
nant voxels which remain volumetrically unchanged for pictorial
representation. This is only for the sake of illustration, while no
voxel filtration is performed during the training stage of the pro-
posed classifier. Fig. 5(b) shows the voxel level volume changes
captured by JD transformation where the hippocampus region ex-
hibits higher changes in volumetric density compared to the other
regions. The findings are consistent with the fact that hippocampus
is one of the major brain regions that is prominently more affected
by the progression of AD [35].

A comparison of the percentage voxel count between AD and
HC classes is performed to differentiate the group differences gen-
erated by performing Jacobian transformation for all dataset sMRIs.
First, the voxel values of all images corresponding to AD (I4p) as
well as HC (Iyc) are counted and collected into two groups and
then these Iyp and Iyc are further sub-categorized on the basis of
whether the value of |Jy| for each voxel is unity or not. Finally,
these values are converted to percentages for a fair group com-
parison as plotted in Fig. 6(a). The stacked bar graph in Fig. 6(a) is
divided into two sub-categories based on the value of |J,|. The per-
centage count in the sub-category of |J,| = 1 indicates voxel-wise
volumetric brain regions which have not been changed after JD
transformation, while [Jy| # 1 indicates those brain regions which
have undergone structural changes. The AD bar indicates that there
are 0.4% voxels in the sub-category of |J,| # 1 compared to 0.19% in
the corresponding HC category. This means that there is more than
twice the number of localized volumetric changes in AD affected
brain images in comparison to its counterpart. Similarly, Fig. 6(a)
shows the percentage voxel count where |J,| = 1 for both AD and
HC classes, which are 99.60% and 99.81% respectively.

The distribution of the JD voxel count for |J,| =1 and its con-
verse is calculated and plotted in Fig. 6(b)~(c). It can be observed
from Fig. 6(b) that there are fewer voxels for the AD class at |J| =
1. This indicates the existence of fewer voxels in AD that show no
volumetric change compared to HC, whereas Fig. 6(c) shows that
there is a higher number of voxels for AD in comparison to HC
at |Jy| # 1, which means there are many more voxels that exhibit
localized volumetric changes in AD while their count is lower in
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Fig. 6. Comparison of group differences generated between AD and HC groups after Jacobian transformation. (a) Percentage voxel count. (b)~(c) Distribution of voxel count

for [J,| =1 and |J,| # 1 respectively.

HC. We removed voxels that have a ‘0’ value before and after JD
transformation to remove a fixed bias from the statistical compar-
isons presented in Fig. 6. These results reinforce the fact that the
JD transformation captures localized volumetric transitions associ-
ated with AD brain structure and consequently reveals the brain
atrophic patterns for disease classification.

All CNN-based classifiers implement convolutional layers, which
convolve the input image (i.e., matrix) with a suitable kernel. The
convolution sum of an image with a zero spatial frequency turns
out to be a meaningless result and if the kernel mask is similar
to the one normally used for image sharping, then the convolu-
tion sum turns out to be absolutely zero. In our scenario, all such
voxel-sized brain regions with no transitions in volumetric brain
structure yield |Jy| =1 in JD transformed images. When these JD
domain images are fed to the CNN classifier, then the meaning-
less features from all such regions are effectively filtered out. This
enables the employed CNN classifier to focus only on those brain
structures within the sMRI which have been altered due to the de-
velopment of AD and eventually classifies the subjects with a high
classification performance.

4.2. Implementation

The proposed algorithm is implemented using a computer with
a GPU (i.e. NVIDIA GeForce RTX 2080 Ti 12GB GDDR6) and a 64-
bit AMD Ryzen Threadripper 1900 x 8-Core processor with in-
stalled RAM size of 64GB DDR4. The implementation is performed
in the Python-based Keras library. The RMSprop optimizer is used
for training the neural network and the binary cross-entropy class
is employed as the loss function, which is defined in Eq. (7).

N
W) = > 10g (P(n X W)). (1)
n=1

where N is the total number of images and j, is the predicted
class label of a given subject X;, for the training set {(X,, )’n)}I,L]-
while P(¥, | Xn; W) is the probability of correct prediction for the
Xn. The total trainable parameters for the model are 769,106 and a
mini-batch size of 2 is selected. The proposed model is trained and

validated on a set of 160 and 40 images respectively. The objective

of the training stage is to reduce the value of the binary cross-
entropy loss function, which eventually improves the training and
validation accuracy. At the end of the training session, the model is
applied to a set of validation images to evaluate the classification
performance of the proposed algorithm.

4.3. Proposed architecture

The proposed architecture utilizes the Sequential model avail-
able in the Keras library, consisting of an input, three convolu-
tional, three max-pooling, a flattened, a fully connected and an
output layer/s. The intuition of purposing a mixed neural network
architecture comes from LeNet-5 structure [36], which consists of
hidden as well as fully connected layers and may be effective in
identifying AD patterns. The number of layers is chosen in terms
of validation performance. The proposed architecture is shown in
Fig. 7. The size of the input image is 181 x 217 x 181 voxels. A rec-
tified linear unit (reLU) is used as an activation function during
all operations involved in the convolution layers, no padding func-
tion is used to compute the convolutional sum, and this produces
a slight change in the output shape of every convolutional layer.
Each convolutional layer is strengthened with an l,-norm kernel
regularizer (KR) to avoid overfitting the classification model by ap-
plying a penalty on the layer’s kernel. The first convolutional layer
employs a kernel size of 3 x 3 x 3 voxels with a filter dimension of
16, KR factor of 103 and its output shape is 179 x 215 x 176 x 16.
The output from the first convolution layer is fed to the first max-
pooling layer which utilizes a kernel size of 3 x 3 x 3 units for
reshaping the MRI data to 59 x 71 x 59 x 16. This downsampled
version is inputted to the second convolutional layer, which uti-
lizes a kernel size of 5 x 5 x 5 units with a size of 32 output fil-
ters, KR factor of 104 and its output shape is 55 x 67 x 55 x 32.
The output of the second convolution layer is sent to the second
max-pooling layer with a kernel size of 4 x 4 x 4 units, which
downsamples the MRI data again to produce an output shape of
13 x 16 x 13 x 32. The output from the second max-pooling
layer is sent to the third and last 3D convolutional layer, which
employs a kernel size of 7 x 7 x 7 units, KR factor of 10~> and
filters of 64 dimensions, while the output shape of the third con-
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Fig. 7. Illustration of JD-CNN architecture for AD/HC classification. The architecture consists of two parts (i) 3D CNN layers (ii) 1D fully connected layers.

volutional layer reduces to 7 x 10 x 7 x 64. This output is even-
tually pushed to the last 3D max-pooling layer with a kernel size
of 5 x 5 x 5 units, which downsamples the MRI data further
and after a successful max-pooling operation, its output shape be-
comes 1 x 2 x 1 x 64. In order to incorporate the fully con-
nected dense layers in the proposed architecture, it is necessary to
utilize a flattened layer to convert four-dimensional MRI data to
a one-dimensional shape, so that it can be fed to a dense layer,
which is ultimately used for classification purposes. Hence, a flat-
tened layer is placed after the third max-pooling layer and it flat-
tens the MRI data to a one-dimensional space with output dimen-
sions of 128 units. Subsequently, this flattened layer is fully con-
nected to the dense layer, and it consists of 16 units. In addition,
like convolutional layers, this layer also utilizes the reLU activation
function. The last layer of the proposed architecture is the output
layer which provides a class label for each MRI image. The output
shape of the dense layer is 16 units, which also suggests that the
number of units utilized in the dense layer is 16. It is activated by
a sigmoid function (¢) and consists of 2 units. This layer generates
binary class labels as output to classify AD versus HC samples. The
total number of trainable parameters in the proposed architecture
is 796,106.

5. Experiment results

The experimental performance of the proposed algorithm is an-
alyzed in this section. The algorithm’s AD classification behavior is
evaluated in terms of validation performance, -fold validation per-
formance and test performance.

5.1. Evaluation parameters

The proposed model is evaluated to classify AD vs. HC subjects.
The performance of the algorithm is assessed using four evalua-
tion parameters, namely classification accuracy (ACC), sensitivity
(SEN), specificity (SPE) and area under receiver operating charac-
teristics (ROC) curve (AUC). ACC, SEN and SPE are defined by Eqs.
(8), (9) and (10) respectively.

Tpos + Theg

ACC =
Tyos + Theg + Fpos + Fueg

(8)

T,
SEN = —P% 9
Tpos + Fueg ©)

Tneg
SPE Toeg + Foos (10)
where Tpos, Treg, Fpos and Freg represent true positive, true negative,
false positive and false negative respectively. To compute AUC, we
first identify all possible pairs of SEN and 1-SPE by changing the
discretizing threshold, which is applied on the classification scores.
The total number of thresholds is 200.

5.2. Analysis pertaining to validation performance

The validation performance of the proposed JD-CNN algorithm
is computed by varying the learning rate (LR) from 10~® to 55 x
10~* with an increment of 5 x 10~% and the corresponding per-
formances are shown in Fig. 8(a) ~Fig. 8(m) respectively. The val-
idation performance corresponding to each LR is recorded up to
100 epochs in search of maximum values of evaluation parameters
to demonstrate the optimum performance of JD-CNN. The perfor-
mance points which indicate maximum values of classification ac-
curacy are termed as best performance points (BPPs). In case there
is a tie between two epochs for selection of a BPP in terms of val-
idation ACC then the epoch with higher validation AUC is selected.
The performance points which do not exhibit any change anymore
and become steady are termed as stable performance points (SPPs).

The selection of suitable LR is very important to achieve an ex-
ceptional learning performance of JD-CNN because the optimiza-
tion process may be confined to local minimum values if a smaller
LR is selected. Similarly, a larger LR may be responsible for increas-
ing loss values. Hence, a suitable and optimal LR value should be
selected to ensure the high performance of a classifier. The BPPs
corresponding to LR are identified and recorded as shown in Fig. 8.
Subsequently, these BPPs are plotted against each LR as shown in
Fig. 9. This plot enables us to identify and select suitable LRs to
compute the optimum test performance of JD-CNN.

Fig. 9 reveals that the BPP in terms of validation ACC is achieved
at LR =15 x 1074, At this LR, the validation ACC, validation AUC,
validation SEN and validation SPE exhibited a high value of 97.96,
98.96, 98.96, and 97.92 respectively. In the case of LR = 15 x 1074,
the BPP is achieved at epoch number 18. The model weights corre-
sponding to this epoch are stored to evaluate the test performance.
The validation ACC of the proposed JD-CNN for LR = 15 x 10~% be-
comes steady and stable at epoch number 20 and beyond as shown
in Fig. 8(d). Hence, the SPPs have a span over the epoch number
20 to 100.
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Fig. 8. Illustration of the proposed JD-CNN validation performance at different values of LRs. (a)~(m) exhibit the performance by varying LR from 10~® to 55 x 10~* with
an increment of 5 x 10~ respectively. The highlighted dotted circle contains the BPP points and dotted curly braces indicates the SPP region.

5.3. Analysis pertaining to 15-fold cross-validation

The validation performance may be influenced by the selection
of training, validation and testing dataset samples. The reason be-
hind the variation in the validation performance is the involvement
of variance during the dataset splitting process. To overcome the
effect of variance over the performance of the proposed model,
we computed 15-fold cross-validation. The 15-fold cross-validation
was evaluated 100 times and then averaged the performance val-

10

ues to reduce the impact of random splits. The algorithm is run
for 100 epochs against each fold and the performance values cor-
responding to the best validation ACC are stored.

Moreover, the 15-fold cross-validation was computed to identify
the optimal LR by varying it from 10~® to 55 x 10~* with an incre-
ment of 5x 10~* as detailed in Table 2. The best 15-fold cross-
validation results are achieved at LR = 15 x 10~#, which validates
our initial selection of LR during the evaluation of the validation
performance given in section 5.2.
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TABLE 2
15-Fold cross validation performance for SMRI
data of ADNI-1 by varying learning rate (LR).

LR (10%) ACC SEN SPE  AUC

0.01 87.24 86.90 86.97 88.01
5 94.69 95.19 94.15 96.14
10 95.08 95.82 93.79 96.95
15 95.42 96.13 94.17 97.26
20 93.28 94.11 92.82 95.59
25 89.50 89.72 88.31 91.24
30 93.34 94.04 92.91 95.72
35 93.47 94.46 93.10 95.84
40 94.62 94.96 93.53 96.48
45 93.89 93.91 92.80 95.26
50 90.34 90.48 89.69 92.82
55 92.23 92.52 91.06 94.32

The 15-fold cross-validation ACCs are smaller than the corre-
sponding validation ACCs depicted in Fig. 8, which are obtained
from random manual dataset split into training and validation
samples. The decrease in 15-fold validation ACCs suggests that
there is a variance when splitting the dataset into training, vali-
dation, and testing subsets. It is also important to note that the
values of the JD-CNN’s 15-fold cross-validation ACCs are still rea-
sonably high for an acceptable AD/HC classification scheme.

5.4. Effectiveness of Jacobian domain classification

The test set contains 38 samples and is separate from the train-
ing and validation sets. The algorithm is trained on the training
set, and the best model is saved according to validation ACC at LR
=15 x 10~%. Then, the saved model is utilized to compute the per-
formance component of the test set. The proposed JD-CNN exploits
the inherited property of JD which quantifies the brain’s volumet-
ric changes in terms of shrinkage or expansiveness [8, 34]. These
types of volumetric transitions are key to identifying the brain at-
rophy patterns behind the development of AD. This is the main
reason for the superlative performance of the proposed JD-CNN
against traditional CNN classifiers, which are normally trained in
the spatial domain (SD). To illustrate the supremacy of the pro-
posed JD-CNN, we remove the Jacobian determinant map genera-
tion module from the proposed framework and re-train the same
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CNN framework, but this time without employing JD features and
denote this implementation as SD-CNN.

The dual attention multi-instance deep learning for the AD di-
agnosis framework [7] and hierarchical fully convolutional network
[20] were reproduced for direct comparison purposes. The size of
each patch was selected as 25 x 25 x 25 voxels for both these stud-
ies. The test performance of Zhu et al. [7], Lian et al. [20], SD-CNN
and JD-CNN is compared and illustrated in Table 3. It is evident
from Table 3 that all four performance parameters prove the supe-
riority of JD-CNN over the competing classifiers. Even though the
work of Zhu et al. [7] is not an end-to-end unified framework and
requires the identification of patch location proposals separately,
its classification is not superior to JD-CNN.

6. Discussion

In this paper, we proposed a novel three-dimensional Jacobean
domain convolutional neural network (JD-CNN) to diagnose AD
subjects. In comparison with other previously reported CNN-based
AD/HC classification frameworks, reported in Table 4, which uti-
lize spatial domain images as input to train the classifier, our pro-
posed JD-CNN algorithm utilizes CNN architecture in the Jacobian
domain and provides a quantitative measure for localized volume
change. The localized volume change is one of the quantification
parameters for diagnosing AD [40]. Unlike the conventional classi-
fication frameworks, which only depend on convolutional network
[7, 20, 22, 35] the JD-CNN exploits the inherent property of Jaco-
bian determinant to compute voxel-level morphological statistics.
These statistics alongside the convolutional network characterize
the brain atrophy caused by dementia. Additionally, different form
existing AD classifiers [18, 21], the JD-CNN is basically a whole
brain subject-level classifier and does not necessitate feature ex-
traction requirements from any explicit pre-determined informa-
tive brain region or patch. This is specifically handy in practice to
simplify the CAD process. This fusion of the Jacobian determinant
map with deep learning results in a strong classifier that classi-
fies the disease samples and has evaluation parameters with high
values.

We have briefly summarized previously reported state-of-the
art studies for AD diagnosis in Table 5. This comparison employs
a different number of subjects and the selection criteria for the
inclusion of specific images is diverse. In addition, not all algo-
rithms use identical subjects and the selected number of train-
ing, validation and testing subsets varies as well [19]. Due to the
aforementioned obstacles, Liu et al. [17] and Lian et al. [20] also
compared their frameworks with a different number of subjects.
Consequently, a similar comparative methodology is adopted for a
rough comparison. A rough comparison of JD-CNN with the state-
of-the-art schemes reported in Table 5 shows that our proposed
JD-CNN scheme achieves a superior classification performance.

We exploited baseline T1-weighted ADNI-1 sMRIs for train-
ing, validation and testing of classification frameworks reported
in Table 3. To further investigate the generalization ability of the
JD-CNN, we acquired additional sMRI samples from the baseline
ADNI-2 datasets that satisfied the same three data selection condi-
tions, which were described for ADNI-1 in the section 3.1. We per-
formed 15-fold cross-validation to develop comparative study for

TABLE 3

Direct performance comparison using sSMRI data of ADNI-1 for AD classification.
Reference Methodology Sample size (HC + AD) ACC  SEN SPE AUC
SD-CNN Spatial domain-based CNN 154,34 8792 9064 8549 8892
Lian et al. [20]  Hierarchical CNN 154484 9076 8924 9281 9432
Zhu et al. [7] Attention-based CNN 154484 94.54 93.97 95.16 96.27
JD-CNN Jacobian map feed CNN 154484 9661 9783 9592 9834
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TABLE 4
a brief description of the previously reported state-of-the-art algorithms using smri data of adni for ad classification.
Reference Methodology Sample size (HC + AD)  ACC SEN SPE AUC
Liu et al. [21] Landmark based CNN 404+452 78.34 4737 83.26 79.04
Lin et al. [22] Patch based extreme learning machine 39,188 7990  84.00 7480  86.10
Li et al. [37] Graph convolutional network 2264186 84.40  83.60 8590 8430
Liu et al. [35]. Hippocampus based multi-model CNN 119497 88.90 86.60 90.80 92.50
Adeli et al. [38] Linear discriminant analysis 101493 9210 - - 94.86
Liu et al. [17] SVM based classification 128497 93.06 9484 9049  95.79
Liu et al. [39] Multiple ensemble SVM 128+97 9383 9278 9569 9416
Chen et al. [5] CNN integrated sparse regression 4174347 95.32 91.18 93.94 -
JD-CNN (Proposed)  Jacobian map feed CNN 154484 9661  97.83 9592 9834
TABLE 5
15-Fold cross validation performance for using SMRI data of ADNI-2.
Reference Methodology Sample size (HC + AD)  ACC SEN SPE AUC
SD-CNN Spatial domain-based CNN 190494 8596 8772 8421  87.90
Lian et al. [20] Hierarchical CNN 100+94 89.91 89.04 90.79 93.44
Zhu et al. [7] Attention-based CNN 100+94 9263 9196 9330 9467
JD-CNN Jacobian map feed CNN 100+94 9420 9464 9375  96.66

the SD-CNN, Lian et al. [20], Zhu et al. [7] and JD-CNN. A learning
rate of 15 x 10~ was selected for the SD-CNN and JD-CNN exper-
iments. The demographic information of the 194 studied subjects
from ADNI-2 is reported in Table S-Ill in the supplementary ma-
terial, while the detailed comparative classification results are pre-
sented in Table 5. It is evident that our proposed JD-CNN classifier
still outperforms the competing techniques. Moreover, the 15-fold
cross-validation results of ADNI-2 are comparable with the ADNI-
1 (i.e.,, Table 3). We can observe that the proposed classifier per-
formed somewhat better in case of ADNI-1. The possible reason
lies in the fact that the studied ADNI-2 samples have a slightly
larger MMSE group difference than the ADNI-2. The classification
results of additional dataset (i.e., ADNI-2) validates the generaliza-
tion ability of the proposed JD-CNN in AD diagnosis.

7. Conclusion

In this paper, we proposed the transformed domain JD-CNN
classification framework, exploiting the Jacobian domain in con-
junction with the convolutional neural network for AD diagnosis.
The proposed JD-CNN algorithm computes the whole-brain Jaco-
bian features that identify alterations in the brain’s volumetric tis-
sues. This framework successfully overcomes the limitations of ex-
isting patch-based and ROI-based models, which lack spatially cor-
related awareness. Moreover, these models necessitate the correct
identification and localization of the relevant patches and ROIs as
well. On the other hand, the proposed JD-CNN calculates whole-
brain Jacobian maps to transform the brain’s volumetric variations
into meaningful transitions which are then exploited to identify
AD patterns and is independent of any patches and ROI extraction.
To the best of our knowledge, this is the first time that the CNN
has been trained in the Jacobian domain to classify AD subjects.
The performance of the proposed method was evaluated on sMRI
data collected from the ADNI database. The experiment results of
our proposed method were compared with state-of-the-art classi-
fication algorithms, which highlighted the superior performance of
JD-CNN for AD/HC classification.

Although the proposed framework demonstrated exceptional
classification performance, its performance and generalization ca-
pacity may be further enhanced in the future by countering the
following limitations and challenges. First, we utilized the l,-norm
kernel regularizer (KR) at each CNN layer to improve the general-
ization of the model. We could potentially modify our framework
by introducing a network pruning strategy with the help of drop-
off layers, which might further improve the generalization capabil-
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ity and reduce the danger of overfitting. Secondly, the utilization
of JD features could be acting as a bottleneck during the network
training stage, therefore, it is imperative to compute the JD features
in a data-driven manner by combining the generator of |D features
and the network into a unified framework. Thirdly, in our current
methodology, the generated JD map may also contain changes as-
sociated with differences in registration, i.e., due to shearing and
scaling operations. It may be a promising direction to further de-
velop a module which quantitatively estimates and eradicates such
differences. Fourth, we only employ sMRI modality for AD diagno-
sis, while disregarding the enormous advantages gained by a mul-
timodal study, such as combining sMRI and PET images. In the fu-
ture, we may investigate the performance of such a multimodal
framework. Fifth, we have not considered numerous confounding
factors (e.g., gender, age, education, and clinical scores) of the stud-
ied subjects. As future work, we may exploit these confounding
factors to develop a joint learning classifier. Moreover, further stud-
ies may utilize the concept of transfer learning to predict subjects
suffering from mild cognitive impairment and prodromal AD stages
by employing the gains of the proposed JD-CNN classifier.
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