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a b s t r a c t 

Structural magnetic resonance imaging (sMRI) has become a prevalent and potent imaging modality 

for the computer-aided diagnosis (CAD) of neurological diseases like dementia. Recently, a handful of 

deep learning techniques such as convolutional neural networks (CNNs) have been proposed to diagnose 

Alzheimer’s disease (AD) by learning the atrophy patterns available in sMRIs. Although CNN-based tech- 

niques have demonstrated superior performance and characteristics compared to conventional learning- 

based classifiers, their diagnostic performance still needs to be improved for reliable classification re- 

sults. The drawback of current CNN-based approaches is the requirement to locate discriminative land- 

mark (LM) locations by identifying regions of interest (ROIs) in sMRIs, thus the performance of the whole 

framework is highly influenced by the LM detection step. To overcome this issue, we propose a novel 

three-dimensional Jacobian domain convolutional neural network (JD-CNN) to diagnose AD subjects and 

achieve excellent classification performance without the involvement of the LM detection framework. We 

train the proposed JD-CNN model on the basis of features generated by transforming the sMRI from the 

spatial domain to the Jacobian domain. The proposed JD-CNN is evaluated on baseline T1-weighted sMRI 

data collected from 154 healthy control (HC) and 84 Alzheimer’s disease (AD) subjects in the Alzheimer’s 

disease neuroimaging initiative (ADNI) database. The proposed JD-CNN exhibits superior classification 

performance to previously reported state-of-the-art techniques. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is one of the most common type of 

eurodegenerative dementia that primarily impairs the function of 

rain neurons and its subsequent progression hampers cognitive 

easoning [1] . It is reported that 5.8 million Americans were living 

ith AD in 2019 and its prevalence has increased by 145% from 

0 0 0 to 2017 [1] . On a global scale, it has affected millions of peo-

le worldwide and the number of affected patients is expected to 

ncrease in the future. Early AD detection is often associated with 

mnesiac symptoms, but the quickest way to diagnose AD at the 

arliest stage is to measure brain atrophy, as amnesiac symptoms 

ppear after brain cell atrophy has already occurred [2] . Success- 

ul early diagnostic assessments enable experts to adopt appropri- 

te procedures in the initial stages of the disease which results 

n effective medication trials [1] . The earliest stage symptoms in- 

lude deterioration in analytical skills and memory [1] . During this 
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arly stage, the atrophic process starts to affect the brain’s neuron 

tructure which ultimately leads to fully developed AD [3] . Many 

on-invasive measures, like structural magnetic resonance imaging 

sMRI), functional magnetic resonance imaging (fMRI) and positron 

mission tomography (PET) etc., are available for AD diagnosis [4] . 

MRI is quite popular among these available measures because it 

xhibits exceptionally high tissue contrast and excellent spatial res- 

lution, which results in identifying minute structural changes as- 

ociated with brain cells to detect AD and its prodromal stages 

ith the help of computer-aided diagnosis (CAD) [5] . 

To quantify the structural changes in sMRI related to AD sub- 

ects, it is necessary to analyze variations in the structure of dis- 

ased brain tissue. These variations are quantified using conven- 

ional learning-based (CLB) and deep learning-based (DLB) tech- 

iques. CLB techniques normally extract handcrafted features such 

s gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), 

ortical thickness and volume changes from sMRI data and employ 

hem to train support vector machines (SVMs) or machine learn- 

ng algorithms like random forest and linear SVM. The drawback 

f these techniques is the lack of coordination between features 

nd the selected classifier, resulting in the degraded performance 

f the classification algorithms [6] . Recently, DLB techniques have 

https://doi.org/10.1016/j.patcog.2022.109031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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emonstrated superior performance in AD/HC classification tasks 

y incorporating powerful convolutional neural networks (CNNs), 

hich have demonstrated great success in image classification. 

The drawback of current CNN-based approaches is the require- 

ent to locate discriminative landmark (LM) locations by identi- 

ying regions of interest (ROIs) or biomarkers [7] in sMRIs, thus 

he performance of the whole framework is highly influenced by 

he LM detection step. A wrongly detected LM may put the whole 

lassification algorithm in jeopardy. The lack of a relationship be- 

ween LM detection and classifier construction is also one of the 

inderances in demonstrating the high performance of AD classifi- 

ation schemes. In addition, the LM detection step requires domain 

nowledge which is not available most of the time. To overcome 

hese challenges, we propose a whole brain subject-level AD clas- 

ifier with high performance characteristics. 

In this paper, we propose a novel DLB framework that feeds 

hole brain Jacobian domain features at the subject-level to CNN 

o diagnose AD subjects, which neither identify any ROI region nor 

xtract any 3D brain patches for classification. The proposed algo- 

ithm is a stepping-stone to accomplish CAD-based AD classifica- 

ion and autonomous diagnosis. 

The proposed novel Jacobian domain convolutional neural net- 

ork (JD-CNN) framework consists of three broad stages, namely: 

i) preprocessing; (ii) Jacobian map generation; and (iii) the CNN. 

he standard pre-processing operation involves four sub-steps, 

amely: (i) anterior commissure (AC) posterior commissure (PC) 

lignment correction, (ii) intensity correction, (iii) skull stripping 

nd (iv) image registration. Further, the pre-processed images are 

tilized to compute the Jacobian determinant maps, which pro- 

ides a quantitative measure to identify the atrophy patterns as- 

ociated with AD. The Jacobian domain (JD) transformation com- 

utes linear approximation of brain matter at each voxel of sMRI. 

irst, a 3D Jacobian matrix is computed from 3D spatial domain 

SD) sMRI. This Jacobian matrix is then employed to calculate a Ja- 

obian determinant at each voxel and the new resultant matrix is 

alled the Jacobian map. One of the characteristics of the Jacobian 

ap is to provide a volumetric ratio of approximate localized at- 

ophy patterns to the original un-atrophy pattern available in SD 

mages and hence the measure of volumetric change is recorded 

8] . Consequently, when there is no localized volumetric change in 

n SD image then the corresponding voxel values in the JD im- 

ge are equal to unity and vice versa. In this way, the analysis of 

he JD image reveals the localized anatomical brain degeneration 

atterns due to volumetric changes in sMRI of AD subjects [9] . 

e et al. [10] have also employed Jacobian determinants to track 

ocalized myocardium motion for quantification the motion field. 

e demonstrate the supremacy of JD features over SD features for 

D/HC classification in this work. The JD maps are subsequently 

xploited to train the CNN classifier, while the trained CNN classi- 

er provides AD vs. HC classification. In the experiments, the train- 

ng, validation and testing of the JD-CNN is performed on the sMRI 

ata collected from the ADNI database [11] . The experiment results 

how the superior performance of the proposed algorithm against 

reviously reported state-of-the-art classification schemes. Follow- 

ng are the main contributions of this paper. 

• We propose a novel JD-CNN architecture which exploits the JD 

features to train a three-dimensional CNN for AD classification. 

The CNN training in JD improves the efficiency of CNN features 

to increase the classification performance because the JD inher- 

ently captures the localized volumetric transitions at the voxel 

level, which is key to identify sMRI patterns associated with AD. 
• We study the effect of JD features over classifier performance. 
• We develop a classifier which does not require any discrimina- 

tive landmark detection and extraction strategy, resulting in the 
2 
reduced computational complexity of the classification frame- 

work. 

The remainder of the paper is organized as follows. In Sec- 

ion II, a concise review of the previously reported AD classifica- 

ion algorithms employing sMRI is presented. In Section III, the 

emographics of the studied material and the adopted preprocess- 

ng pipeline for homogenizing the dataset is elaborated. Section IV 

escribes the methodology to generate Jacobian features and the 

roposed CNN architecture. In Section V, the performance of the 

roposed JD-CNN is evaluated and compared with state-of-the-art 

lgorithms. Section VI describes the differences between the pro- 

osed JD-CNN and the previously reported algorithms for AD vs. 

C classification, and finally Section VII concludes the paper. 

Algorithm 1 , Algorithm 2 

. Related work 

In this section, a concise description of the existing sMRI-based 

lassification schemes is provided. The previous studies are di- 

ided into two broad categories: namely conventional learning- 

ased (CLB) and deep learning-based (DLB) techniques. 

.1. Conventional learning-based techniques (CLB) 

Traditionally, CLB technique features are generated by quantify- 

ng structural changes linked with the brain’s density maps, surface 

rea and regions [12] . Typically, density map-based approaches 

mploy gray matter (GM), white matter (WM), cerebrospinal fluid 

CSF), cortical thickness, volume change or a combination of any 

f these to quantify changes in the brain’s structure associated 

ith atrophic process due to the progression of AD. Usually, the 

M, WM and CSF maps are generated by means of voxel-based 

orphometry (VBM). Moller et al. [13] proposed a VBM-based AD 

ramework that classified AD patients by analyzing GM density 

aps and incorporating an SVM classifier. Normally, the VBM ap- 

roaches suffer from the generalization problem due to high di- 

ensional sMRI data with millions of voxels. To overcome the 

verfitting hurdle, dimensionality reduced density maps were gen- 

rated for AD classification. Salvatore et al. [14] employed princi- 

le component analysis (PCA) for dimensionality reduced WM and 

M density maps. Due to the classifier’s over-dependence in the 

imensionality reduction step, it may be a bottleneck in develop- 

ng VBM-based high-performance classifiers. 

Surface area-based approaches exploit alterations in the brain’s 

emporal and parietal regions of the cortical surface. In any classi- 

cation framework, the surface area plays the same role as the lo- 

alized volumetric data in the density map. Li et al. [15] computed 

ortical surface morphological features from all vertices to develop 

n SVM-based classifier. The high-dimensional surface area-based 

pproaches suffer from a similar generalization problem as density 

ap-based classifiers and these types of algorithms also require 

imensionality reduction approach to avoid overfitting. Park et al. 

16] proposed an SVM-based AD classifier by adopting cortical 

hickness and sulcal depth in terms of three dimensional meshes 

hich employed PCA-based dimensionality reduction mechanism. 

Region-based approaches take advantage of the features gen- 

rated from specific brain regions. The brain regions are either 

re-defined based on histological prior studies or anatomical brain 

tlases. Liu et al. [17] proposed a relationship-induced multi- 

emplate learning method such that every single image in the 

ataset is non-linearly registered onto multiple pre-selected atlases 

sing spatial normalization to extract regional features. These fea- 

ures are subsequently utilized to develop ensemble classifiers for 

D diagnostics. These types of techniques have a degraded perfor- 

ance possibly due to heterogeneities between the generated fea- 



S. Qasim Abbas, L. Chi and Y.-P.P. Chen Pattern Recognition 133 (2023) 109031 

Algorithm 1 

Pre-processing operations to homogenize dataset. 

Input: Input image I from ADNI-1 database. 

Output: G AT (affine registered image). 

1: FOR i = 0 to N do // N is the total number of selected images for this study 

2: Compute a flipped version (F ) of input image (I) ; //ACPC correction starts here 

3: Determine MSP of I using equation (2) in such a way that equation (1) yields maximum symmetric image plane; 

4: Transform I to PIL orientation; 

5: Identify AC and PC positions of I using pretrained model; 

6: Apply rigid transformation to correctly align ACPC line; 

7: Inverse transform I from PIL orientation; 

8: Shift image intensity from T m to T new . Intensity correction; //Intensity correction starts here 

9: Distribute all intensities around T new by ensuring σ = 1 ; 

10: Fit intensity corrected image over a standard template SRI24 to calculate R f transformation and I RA ; //Skull stripping starts here 

11: I RA is segmented into GM, WM, and CSF; 

12: Fuse the generated GM, WM and CSF segments of to get I AM ; 

13: Map I AM to I RA for generating skull stripped image; 

14: Map skull stripped image to standard Colin27 template; //Image registration starts here 

15: Generate G AT using equation (3); 

16: END 

Algorithm 2 

Proposed JD-CNN. 

Input: G AT (affine registered images). 

Output: Predicted binary class labels ˆ y . 

1: FOR p = 0 to N do // N is the total number of G AT images 

2: Initialize a null matrix J f having dimensions 181 × 217 × 181 to store Jacobian map corresponding to G AT . 

3: FOR q = 0 to V AT do // V AT is the total number of voxels in G AT 

4: J v ← ∇ v ( I ( i q , j q , k q ) G AT 
) // using equation (4) 

5: | J v | ← det ( J v ) // using equation (5) 

6: J f ← J f ∪ | J v | // store | J v | scalar value to 3D J f matrix 

7: END 

8: END 

9: Initialize Sequential model, three convolutional, three max-pooling, a flatten, a fully connected and an output layer. 

10: FOR r = 0 to N do 

11: C 1 st = { C 1 , C 2 , . . . , C 16 } 3 ×3 ×3 ← con v 3 D 1 st ( J f ) //where C i ∈ R w ×w ×w and params #448 

12: MP 1 st 
3 × 3 × 3 ← max - pooling( C 1 st ) 

13: C 2 nd = { C 1 , C 2 , . . . , C 32 } 5 × 5 × 5 ← con v 3 D 2 nd ( MP 1 st ) // Params #64,032 

14: MP 2 nd 
4 × 4 × 4 ← max - pooling( C 2 nd ) 

15: C 3 rd = { C 1 , C 2 , . . . , C 64 } 7 × 7 × 7 ← con v 3 D 3 rd ( MP 2 nd ) // Params #702,528 

16: MP 3 rd 
5 × 5 × 5 ← max - pooling( C 3 rd ) 

17: F D 
3 D to 1 D ← f latten data ( MP 3 rd ) 

18: D = { D 1 , D 2 , . . . , D 16 } ← dense ( F D ) // Params #2064 

19: ˆ y ← ς(D ) // Params #34 

20: END 
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ures and adopted classifiers. Another possible reason for demon- 

trating sub-optimal learning performance is that the hand-crafted 

eatures generated from sMRIs to build suitable classifiers do not 

oordinate well with the classification framework [18] . Hence, deep 

earning-based approaches emerge to help achieve superior clas- 

ification performance due to the unification of the hand feature 

xtraction stage and corresponding classifier. 

.2. Deep learning-based techniques (DLB) 

Recently, numerous deep learning-based (DLB) techniques 

specifically CNNs) have been proposed to classify AD affected sub- 

ects. The deep CNNs are employed to generate the feature space 

or disease classification. Three-dimensional (3D) DLB classifiers 

re divided into the following three categories, depending on the 

ature of the employed features: (i) patch-based, (ii) ROI-based, 

iii) subject-based. 

Patch-based DLB approaches extract 3D patches from sMRIs 

19] . Lian et al. [20] proposed a patch-level classifier that automat- 

cally extracts image patches around the LM locations available in 

MRI data by exploiting a weakly-supervised learning methodol- 

gy and then computing group comparisons between HC and AD 

amples to train their ensemble network. Their framework em- 
3 
loyed non-linear registration to build voxel-wise anatomical cor- 

espondence between different subjects, which is computationally 

xpensive and a hinderance in developing a time efficient clas- 

ifier. Liu et al. [21] demonstrated the efficiency of a landmark- 

ased CNN technique by extracting image patches around pre- 

efined landmark locations. These image patches are then utilized 

o train a CNN model. The drawback of their technique is that each 

enseNet is independently trained and hence it is challenging to 

ptimize the complete framework. The main limitation of patch- 

evel DLB frameworks is their complexity. In these approaches, nor- 

ally each patch is independently input to train sub-networks, 

alled patch-level sub-networks. The outputs from these patch- 

evel sub-networks are subsequently fused and retrained at region- 

evel and subject-level sub-networks respectively [19] . 

ROI-based approaches extricate 3D patches only from the spe- 

ific informative brain parts, unlike patch-based algorithms which 

lice whole or LM identified brain parts into patches. The rationale 

f employing the ROI-based approach is that all patches extracted 

hrough patch-based schemes do not necessarily contain atrophy 

atterns and hence their selection is not worthwhile [19] . Nor- 

ally, the ROI-based classifiers focus on those brain parts which 

ave demonstrated comparatively higher levels of atrophic degra- 

ations due to the progression of AD, resulting in maximizing the 
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Fig. 1. Illustration of pre-processing operations to homogenize the dataset. (a) Original image with misaligned ACPC line (indicated by dotted yellow line). (b) Orientation 

corrected version with horizontal ACPC line. (c) Effect of intensity correction. (d) Extraction of brain tissue. (e) A skull stripped Colin27 template for image registration. (f) 

Affine linear registered image after removing global inconsistencies. 
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roup difference between AD and HC. Typically, the ROIs are se- 

ected on a priori basis. Another advantage of the ROI-based ap- 

roaches is the reduction in the complexity of the framework due 

o fewer volumetric ROI-based patches. Lin et al. [22] proposed a 

ippocampus-based classification framework, which performed a 

eformable registration of hippocampus as part of the image pro- 

essing block to link voxel-wise correspondence between different 

ntities and then extracted 151 patches from each image for in- 

utting to the classifier. The chief drawback of these frameworks 

s the selection of only a specific or a handful of ROIs to identify

D patterns, while the atrophic process occurs in the entire brain 

nd not just in some specific isolated brain regions. Another limi- 

ation of this approach is the identification of localized discrimina- 

ive brain regions in the sMRI before training any network/model, 

hich affects the performance of the classification framework and 

ventually, the diagnostics becomes unreliable. 

Both the patch-based and ROI-based classification frameworks 

ack whole-brain spatially-correlated information. To overcome this 

imitation, a subject-based framework [ 23 , 24 ] is designed which 

akes the whole-brain image as input at once. This type of frame- 

ork performs subject-level classification. Wang et al. [23] re- 

orted an ensemble whole-brain classification framework with the 

elp of 3D CNN layers. The framework included dense blocks be- 

ween CNN layers to maximize the information flow. Basaia et al. 

24] proposed a classifier without any feature engineering and its 

erformance was not affected by heterogeneities in the imaging 

canner. The details of the adopted procedures and their corre- 

ponding parameters were not reported [24] . Wen et al. [19] ana- 

yzed the classifiers reported in [ 23 , 24 ] and concluded the preva-

ence of data leakage in these frameworks. The data leakage phe- 

omenon refers to any of the following four main concerns (i) 

rong dataset split, (ii) late split, (iii) biased transfer learning and 

iv) absence of an independent test set [19] . Lian et al. [25] devel-

ped an end-to-end DLB classifier for the joint regression of multi- 

le clinical scores. The results were comparatively better but might 

ot be precise enough for AD diagnosis. 

The key concerns regarding subject-based DLB approaches is 

he lack of explanation about adopted preprocessing procedures 

nd the prevalence of data leakage reported in [19] , which ham- 

ers the diagnostic performance of unseen test datasets. The lack 

f a preprocessing explanation means the absence of motivation 

ehind its adaptation or a lack of technical information due to its 

n-house development. 

We developed a novel transformed domain whole-brain 

ubject-level AD classification algorithm that may not have any 
4 
ata leakage. In addition, we provide a detailed explanation of the 

dopted preprocessing procedures for reproducible evaluation. 

. Preprocessing 

Structural magnetic resonance imaging (sMRI) modality re- 

uires certain specific preprocessing operations before they can be 

tilized in a relevant classification algorithm for diagnostic pur- 

oses. We implemented a standard preprocessing pipeline to uni- 

ormize images across a complete dataset. The uniformization pro- 

ess is necessary to harmonize sMRIs across all dataset images. 

We adopted four standardized pre-processing operations, 

amely: ACPC alignment correction for identical orientation, inten- 

ity correction for uniform homogeneity, skull stripping to extract 

rain tissue and image registration for geomatic alignment. The 

omplete preprocessing flow diagram is shown in Fig. 1 . We ex- 

loit structural equation modeling (SEM) tools available under the 

ipype interface [26] for ACPC alignment and intensity correction, 

kull stripping is performed by employing Insight Toolkit (ITK) [27] , 

hile image registration is accomplished with the help of advanced 

ormalization tools (ANTs) [28] . 

.1. Dataset 

The performance of the proposed JD-CNN algorithm is evalu- 

ted on baseline T1-weighted sMRI data collected from 154 healthy 

ontrol (HC) and 84 AD subjects from an Alzheimer’s disease neu- 

oimaging initiative-1 (ADNI-1) database [11] . The images included 

n this study are captured by a scanner with a magnetic field 

trength of 3T, so the spatial and voxel resolutions are not uniform 

cross all dataset images. The minimum and maximum spatial res- 

lutions of the studied images are 240 × 256 × 160 and256 × 256 ×
70 respectively, while the voxel resolutions are presented in Table 

-I in the supplementary material. 

The repetition time (TR) and echo time (TE) of the scanner dur- 

ng sMRIs acquisition are 6.802 ms and 3.158 ms respectively [11] . 

he selection of these specific images from the ADNI-1dataset is 

ased on the following three conditions: 

• Eyes in the MSP aligned image must be lower than the AC point 

in a superior-inferior direction. 
• The physical distance between the left and right eye must be at 

least 40 mm. 
• The non-zero norm for a bounding area which means that the 

algorithm doesn’t converge, and the resulting ACPC points are 
not located precisely. 
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TABLE 1 

Demographic information of 238 studied subjects from ADNI-1 database. 

Category Diagnostic group Subject count Gender(M/F) Age (Years) Education (Years) MMSE ADAS-11 DIGITSCOR 

Training HC 92 31 / 61 75 . 88 ± 03 . 99 15 . 95 ± 1 . 90 29 . 13 ± 0 . 75 06 . 18 ± 02 . 64 48 . 55 ± 09 . 12 

AD 51 15 / 36 73 . 49 ± 08 . 04 13 . 86 ± 2 . 46 21 . 42 ± 3 . 88 21 . 31 ± 08 . 15 27 . 01 ± 12 . 67 

Validation HC 31 13 / 18 75 . 25 ± 03 . 77 16 . 53 ± 1 . 52 29 . 28 ± 0 . 50 06 . 46 ± 02 . 46 51 . 41 ± 06 . 82 

AD 16 05 / 11 73 . 65 ± 09 . 25 15 . 18 ± 3 . 13 21 . 87 ± 3 . 61 19 . 25 ± 7 . 52 30 . 89 ± 13 . 40 

Testing HC 31 14 / 17 75 . 61 ± 03 . 95 16 . 07 ± 1 . 96 29 . 16 ± 0 . 73 06 . 18 ± 2 . 46 47 . 12 ± 09 . 89 

AD 17 07 / 10 73 . 55 ± 05 . 73 14 . 64 ± 3 . 14 21 . 05 ± 3 . 79 22 . 18 ± 6 . 74 26 . 99 ± 11 . 89 
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Fig. 2. Effect of intensity correction over the image histogram of an arbitrary HC 

sMRI. The black and red lines indicate the voxel distribution before and after inten- 

sity correction. The mean voxel value is shifted from T m to T new after homogenizing 

the intensity distribution. 
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The division of subjects into HC and AD categories is based on 

tandard clinical criteria, including the mini-mental state examina- 

ion (MMSE) score, Alzheimer’s disease assessment scale (ADAS-11) 

hich includes 11 subject participation tasks and the digit symbol 

otal correct (DIGITSCOR) score. We also ensure that all images of 

 subject are assigned to a single category and must not split to 

thers, for example, if one image of a subject is assigned to the 

raining category, then all other available images of that subject, 

hich are taken at some other time frame, must also be assigned 

o the training category. In addition, we ensure that the duplicate 

MRI samples must also be removed from the selected data. 

The proposed model is trained, validated, and tested on a set of 

43,47 and 48 images respectively. The selection of subjects in the 

pecific diagnostic group is performed randomly. The demographic 

nformation of the 238 studied subjects from the ADNI database is 

eported in Table 1 . 

.2. ACPC alignment correction 

The AC and PC are both WM tracts that link the cerebral hemi- 

pheres of the brain. However, there is a potential alignment prob- 

em with the original dataset images. The obstacle is that the im- 

ges are not oriented in an identically uniform manner, which af- 

ects the diagnosis efficiency of any classification scheme. To re- 

olve this issue, Ardekani et al. proposed a two-stage methodology 

 29 , 30 ] that corrects the orientation of 3-dimensional MRI images. 

he proposed scheme [29] tries to align the image into a maximum 

ymmetric plane by calculating the cross-correlation between two 

alves of a single image. In the first stage, the algorithm takes the 

noriented image ( I ) as input and mirrors this image across the 

lane to obtain a flipped version of I as F . The cross-correlation 

omputational function s ( I, F ) between I and F is represented by 

1). 

 ( I, F ) = 

∑ 

i 

∑ 

j 

∑ 

k 

((
I i jk − μ′ )(F i jk − μ′′ ))√ ∑ 

i 

∑ 

j 

∑ 

k 

((
I i jk − μ′ )2 

)∑ 

i 

∑ 

j 

∑ 

k 

((
F i jk − μ′′ )2 

)

(1) 

here I is the original input image, μ′ is the mean value of I , F is

he flipped version of I and μ′′ is the mean value of F , while i, j

nd k represent three dimensions of an MRI. Both the AC and PC 

ocations normally lay over the mid-sagittal plane (MSP) and the 

SP in the image is generically represented by Eq. (2) [30] . 

 i + Y j + Z k = 1 (2) 

here X i , Y j and Z k represent a unique set of parameters to char-

cterize a three-dimensional plane containing MSP. The three un- 

nown factors X i , Y j and Z k need to be calculated to correctly iden-

ify MSP and they are computed by optimizing Eq. (2) in such a 

ay that Eq. (1) produces the maximum value to acquire the max- 

mum symmetric plane [29] . Then, the images are transformed to a 

osterior-inferior-left (PIL) orientation by ensuring that MSP aligns 

long the x = 0 plane. 

In the second stage, a model-based approach [30] is used where 

 model is trained with the already identified AC and PC locations. 
5 
he dataset images are fed into the trained model to identify the 

pproximate locations of the AC and PC points. Subsequently, a 

mall number of perturbations in the form of translation and ro- 

ation are applied to align AC and PC locations along MSP. A linear 

igid transform is utilized to ensure the ACPC line is parallel to 

he z-axis (i.e. posterior in PIL) of the input image, the subject’s 

eet align to the y-axis (i.e. inferior in PIL), and the MSP aligns it- 

elf along the x = 0 plane. In an unaligned image, the straight line

oining AC and PC locations make some angle ( θ ) with the z-plane 

i.e. posterior in PIL and shown as the yellow dotted line in Fig. 1 ).

he correctly aligned brain image in the PIL orientation forms an 

ngle θ = 0 ◦ with the posterior axis. In this way, all the dataset 

mages are aligned with a uniform orientation. Finally, an inverse 

IL transformation is calculated and applied to transform the im- 

ge back to its original axis without changing its spatial resolution. 

.3. Intensity correction 

The MRI images do not exhibit uniform homogeneity across the 

hole dataset, and it changes evenly within an image. This non- 

niformity contributes to variations in images and is quite negligi- 

le for visual inspection. This type of inconsistency in images does 

ot contribute to any diagnoses challenge for domain experts but 

ffects the performance of CAD significantly. To resolve this prob- 

em, intensity correction must be performed for each individual 

mage to achieve uniform homogeneity across all images included 

n study. This step enables CAD frameworks to exhibit better clas- 

ification performance. 

MRI data suffers from image inhomogeneity and hence voxel 

alues differ appreciably from one image to another with the same 

haracteristics. To resolve this problem, image intensity distribu- 

ion is rescaled for each sMRI of the dataset by shifting its mean 

ntensity T m 

to a new value T new 

in such a way that the standard

eviation σ comes out as unity without changing its spatial resolu- 

ion. The effect of intensity rescaling is evident from Fig. 2 where 

he majority voxel values of the ACPC aligned image reside very 

lose to the origin and the mean intensity of the ACPC corrected 

mage is T m 

, while after intensity rescaling, the mean intensity is 
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Fig. 3. Illustration of SRI24 template-based skull stripping, which strips non-brain 

tissue from the image. 
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and all other intensities are distributed by ensuring 

= 1 . 

.4. Skull stripping 

The process of effectively segmenting brain tissue (cortex and 

erebellum) from a non-brain structure (e.g. skull and eyeballs 

tc.) is called skull stripping. The resultant image contains only 

rain matter, while all non-brain matter is filtered out. This pro- 

ess helps all CAD frameworks to focus on the brain structure re- 

ponsible for the AD while non-brain matter does not contribute 

ny significance for diagnoses procedures. 

An atlas-based skull stripping technique is used in this step 

hich employs a standard SRI24 template image [31] to distin- 

uish and separate brain tissue from non-brain tissue. SRI24 is an 

RI-based atlas of normal adult human brain anatomy, generated 

y template-free nonrigid registration from images of 24 HC sub- 

ects [31] . The ages of all 24 subjects involved in template gener- 

tion are different. As there are 24 different age groups, the adult 

rain template which is formed has more generality across all age 

roups. The youngest and oldest persons are aged 19 years and 84 

ears respectively [31] . The SRI24 atlas is generated from images 

cquired from a scanner with a magnetic field strength of 3T [31] , 

nd our studied dataset is also collected from a 3T scanner. More- 

ver, the 3T scanner exhibit improved tissue contrast compared to 

.5T, which results in an efficient skull stripping operation. Hence, 

he SRI24 atlas is preferred over other available atlases in this step. 

The standard template is fitted over each intensity-corrected 

mage to calculate a rigid registration function ( R f ) and acquire a 

egistered atlas version I RA of the input sMRI. The R f only allows 

otation and translation operations, and is utilized for segmenting 

he image into GM, WM and CSF which are fused to produce an 

tlas mask I AM 

for brain tissue. Then, the I AM 

is mapped to I RA to

enerate a skull stripped image. The complete skull stripping pro- 

ess is depicted in Fig. 3 . 

It is important to note that this step utilizes a template to iden- 

ify brain tissues. This step must not be confused with the regions 

f interest (ROIs)-based approach, where specific ROIs (i.e. specific 

rain regions) are extracted from brain images and fed to the clas- 

ifier, whereas we extract whole brain images and do not rely on 

ny specific ROI. 

.5. Image registration 

This step involves a 3-dimensional image registration by utiliz- 

ng affine transformation (AT) which registers a skull stripped im- 
6 
ge to a skull stripped Colin27 template space [32] with a spatial 

esolution of 181 × 217 × 181 voxels. The procedure to perform 

kull stripping of a standard Colin27 template is the same as ex- 

lained in section 3.4. In other words, the skull stripped Colin27 

emplate is aligned to the SRI24 template space and the AT can 

nly perform shearing and scaling operations. The Colin27 atlas is 

referred in this step because it demonstrates an overlap score of 

.414 compared to SRI24’s 0.412 for equally weighted AFFINE reg- 

stration [31] . The higher overlap score motivates us to utilize the 

olin27 atlas for spatial normalization. 

AT is a linear transformation that preserves the structure of the 

mage space and induces only geometric distortions by transform- 

ng D 

s → D 

ARS , where D 

s and D 

ARS both represent computational 

patial domains before and after AT. Let I s = I( i s , j s , k s ) b e the spa-

ial domain value of one of the voxels v s in the skull stripped im- 

ge, I r = I( i r , j r , k r ) be its transformed value, and I t = I( i t , j t , k t ) b e

he value in the standard template space. This step transforms the 

osition of I s by changing its positional vectors from ( i s , j s , k s ) t o 

 i r , j r , k r ) according to ( i t , j t , k t ) ov er a computational spatial do- 

ain D 

s using mattes as a cost function and is represented by Eq. 

3) . 

 AT ∈ I r | I r : I s → I t , ∀ I s ∈ D 

s (3) 

here G AT is an AT image that contains all voxels of a skull 

tripped image in a new vector space ( i r , j r , k r ) . The affine trans- 

ormed vector space ( i r , j r , k r ) is in alignment with a standard 

emplate space ( i t , j t , k t ) where I( i r , j r , k r ) ∈ G AT → D 

ARS . The map-

ing of an arbitrary voxel I s to I t to acquire I r is illustrated 

n Fig. 4 . 

Affine registration is utilized to remove scale anomalies across 

omplete datasets by registering each image to a standard tem- 

late. In addition, this process also changes the spatial resolution 

f images to 181 × 217 × 181 voxels as well as resamples all images 

o acquire uniform voxel resolution of 1 × 1 × 1 mm 

3 . 
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. Proposed 3D Jacobian domain convolutional neural network 

The pre-processed images are transformed to the Jacobian do- 

ain to generate a Jacobian determinant map, which is utilized 

o train a CNN model. Recently, Ye et al. [10] investigated the 

racking of regional myocardium motion on cardiac tagging MRI 

cans. The authors utilized Jacobian determinant maps as evalua- 

ion metrics for quantifying the motion field orientation to mea- 

ure its smoothness, perseverance and bijectivity through unsuper- 

ised deep learning. Stypułkowski et al. [33] employed Jacobian 

eterminants to fulfill the tractability requirement of normalizing 

ows for developing a conditional flow-based point cloud genera- 

or. Spasov et al. [34] exploited Jacobian maps to develop a multi- 

odal framework which quantified local volumetric transitions as- 

ociated with AD. These studies [ 10 , 33 , 34 ] motivate us to take ad-

antage of Jacobian determinant maps for quantifying voxel-level 

olumetric transitions associated with AD through a deep learning- 

ased framework. The conversion of the image from the spatial do- 

ain to the Jacobian domain is performed using ANTs [28] through 

on-geometric parameter settings. The implementation details and 

he proposed architecture are explained in this section. 

.1. Feature extraction 

The affine registered images G AT from the previous pre- 

rocessed stage are used to generate Jacobian maps | J f | , which 

re subsequently utilized to train the proposed convolutional net- 

ork. The | J f | quantifies changes in the brain’s volumetric tissue 

n an sMRI. These changes are key to monitoring the anatomical 

lterations in the brain’s structure and transfiguring all volumetric 

ariations into meaningful transitions, which can be exploited to 

etect and classify AD patterns. 

Let a function v that maps all voxels V AT in G AT be defined in 

ffine transformed vector space ( i r , j r , k r ) to a grid of ( i s , j s , k s ) po- 

itional vectors. The first order partial derivative of v can be ex- 

ressed as ∇ v . The ∇ v transforms the image domain: D 

ARS → D 

J ,

here D 

J represents the Jacobian domain of sMRI. This transfor- 

ation function computes ∇ v at each voxel of G AT with respect 

o i s , j s and k s . The ∇ v forms the Jacobian matrix ( J v ) such that

 v ∈ D 

J and J v for an arbitrary voxel I s can be represented by Eq.

4) . 

 v ← ∇ v ( I ( i s , j s , k s ) ) = 

[
∂ v 
∂i s 

∂ v 
∂ j s 

∂ v 
∂k s 

]
(4) 

here v lies in the 3-dimensional plane, so it can be decomposed 

nto basis functions v = v i r ˆ i + v j r ˆ j + v k r ˆ k , where ˆ i , ˆ j and 

ˆ k are the

nit vectors along x , y and z directions. The determinant of J v can 

e computed using Eq. (5) . 

 

J v | = 

∣∣∣∣∣∣∣

∂ v i r 
∂i s 

∂ v i r 
∂ j s 

∂ v i r 
∂k s 

∂ v j r 
∂i s 

∂ v j r 
∂ j s 

∂ v j r 
∂k s 

∂ v k r 
∂i s 

∂ v k r 
∂ j s 

∂ v k r 
∂k s 

∣∣∣∣∣∣∣
(5) 

The | J v | in (5) is called a Jacobian map for an arbitrary voxel 

 s and is a quantitative factor to record the type of deformations 

 T incorporated by the image registration step. The value of D T 

ndicates the type of volumetric transition as illustrated in Eq. (6) . 

 T = { 
v olume compression i f | J v | < 1 ;
v olume expansion i f | J v | > 1 ;

no change i f | J v | = 1 . 

(6) 

The value of D T identifies the brain’s volume change at voxel 

evel and provides the main reason of employing JD features. The 

rst two conditions of Eq. (6) indicate the compression and expan- 

ion of a single voxel volume respectively, while the third condi- 

ion triggers when | J v | stays unity and in return highlights the fact 

hat there is no change in the voxel volume. The total number of 
7 
 J v | in a single brain image are equal to the total number of voxels

vailable in it. Each voxel in G AT is replaced with its correspond- 

ng | J v | to form J f . The three conditions listed in Eq. (6) play a

ajor role in developing a high-performance CNN-based classifier. 

he computation of J f is a linear process and does not change the 

imensions of the image. Hence, the dimensions of the sMRI after 

D conversion are identical to the AT image (i.e. 181 × 217 × 181 ). 

s an example, the effect of JD transformation for an arbitrary AD 

atient is illustrated in Fig. 5 , where Fig. 5 (a) and Fig. 5 (b) repre-

ent the AT image in SD and its corresponding JD transformed ver- 

ion respectively. Fig. 5 (b) illustrates voxels which strictly follow 

he condition | J v | � = 1 . We exclude voxels that satisfy the | J v | = 1

ondition, because we want to highlight the brain regions which 

ave undergone localized volumetric change and avoid predomi- 

ant voxels which remain volumetrically unchanged for pictorial 

epresentation. This is only for the sake of illustration, while no 

oxel filtration is performed during the training stage of the pro- 

osed classifier. Fig. 5 (b) shows the voxel level volume changes 

aptured by JD transformation where the hippocampus region ex- 

ibits higher changes in volumetric density compared to the other 

egions. The findings are consistent with the fact that hippocampus 

s one of the major brain regions that is prominently more affected 

y the progression of AD [35] . 

A comparison of the percentage voxel count between AD and 

C classes is performed to differentiate the group differences gen- 

rated by performing Jacobian transformation for all dataset sMRIs. 

irst, the voxel values of all images corresponding to AD ( I AD ) as 

ell as HC ( I HC ) are counted and collected into two groups and 

hen these I AD and I HC are further sub-categorized on the basis of 

hether the value of | J v | for each voxel is unity or not. Finally,

hese values are converted to percentages for a fair group com- 

arison as plotted in Fig. 6 (a). The stacked bar graph in Fig. 6 (a) is

ivided into two sub-categories based on the value of | J v | . The per-

entage count in the sub-category of | J v | = 1 indicates voxel-wise 

olumetric brain regions which have not been changed after JD 

ransformation, while | J v | � = 1 indicates those brain regions which 

ave undergone structural changes. The AD bar indicates that there 

re 0 . 4% voxels in the sub-category of | J v | � = 1 compared to 0.19% in

he corresponding HC category. This means that there is more than 

wice the number of localized volumetric changes in AD affected 

rain images in comparison to its counterpart. Similarly, Fig. 6 (a) 

hows the percentage voxel count where | J v | = 1 for both AD and

C classes, which are 99.60% and 99.81% respectively. 

The distribution of the JD voxel count for | J v | = 1 and its con-

erse is calculated and plotted in Fig. 6 (b) ∼(c). It can be observed

rom Fig. 6 (b) that there are fewer voxels for the AD class at | J v | =
 . This indicates the existence of fewer voxels in AD that show no 

olumetric change compared to HC, whereas Fig. 6 (c) shows that 

here is a higher number of voxels for AD in comparison to HC 

t | J v | � = 1 , which means there are many more voxels that exhibit

ocalized volumetric changes in AD while their count is lower in 
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Fig. 6. Comparison of group differences generated between AD and HC groups after Jacobian transformation. (a) Percentage voxel count. (b) ∼(c) Distribution of voxel count 

for | J v | = 1 and | J v | � = 1 respectively. 
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C. We removed voxels that have a ‘0 ′ value before and after JD 

ransformation to remove a fixed bias from the statistical compar- 

sons presented in Fig. 6 . These results reinforce the fact that the 

D transformation captures localized volumetric transitions associ- 

ted with AD brain structure and consequently reveals the brain 

trophic patterns for disease classification. 

All CNN-based classifiers implement convolutional layers, which 

onvolve the input image (i.e., matrix) with a suitable kernel. The 

onvolution sum of an image with a zero spatial frequency turns 

ut to be a meaningless result and if the kernel mask is similar 

o the one normally used for image sharping, then the convolu- 

ion sum turns out to be absolutely zero. In our scenario, all such 

oxel-sized brain regions with no transitions in volumetric brain 

tructure yield | J v | = 1 in JD transformed images. When these JD 

omain images are fed to the CNN classifier, then the meaning- 

ess features from all such regions are effectively filtered out. This 

nables the employed CNN classifier to focus only on those brain 

tructures within the sMRI which have been altered due to the de- 

elopment of AD and eventually classifies the subjects with a high 

lassification performance. 

.2. Implementation 

The proposed algorithm is implemented using a computer with 

 GPU (i.e. NVIDIA GeForce RTX 2080 Ti 12GB GDDR6) and a 64- 

it AMD Ryzen Threadripper 1900 × 8-Core processor with in- 

talled RAM size of 64GB DDR4. The implementation is performed 

n the Python-based Keras library. The RMSprop optimizer is used 

or training the neural network and the binary cross-entropy class 

s employed as the loss function, which is defined in Eq. (7) . 

 ( W ) = − 1 

N 

N ∑ 

n =1 

log 
(
P 

(
ˆ y n | X n ;W 

))
, (7) 

here N is the total number of images and ˆ y n is the predicted 

lass label of a given subject X n for the training set { ( X n , y n ) } N n =1 ,

hile P( ̂  y n | X n ; W ) is the probability of correct prediction for the

 n . The total trainable parameters for the model are 769,106 and a 

ini-batch size of 2 is selected. The proposed model is trained and 

alidated on a set of 160 and 40 images respectively. The objective 
8 
f the training stage is to reduce the value of the binary cross- 

ntropy loss function, which eventually improves the training and 

alidation accuracy. At the end of the training session, the model is 

pplied to a set of validation images to evaluate the classification 

erformance of the proposed algorithm. 

.3. Proposed architecture 

The proposed architecture utilizes the Sequential model avail- 

ble in the Keras library, consisting of an input, three convolu- 

ional, three max-pooling, a flattened, a fully connected and an 

utput layer/s. The intuition of purposing a mixed neural network 

rchitecture comes from LeNet-5 structure [36] , which consists of 

idden as well as fully connected layers and may be effective in 

dentifying AD patterns. The number of layers is chosen in terms 

f validation performance. The proposed architecture is shown in 

ig. 7 . The size of the input image is 181 × 217 × 181 voxels. A rec-

ified linear unit (reLU) is used as an activation function during 

ll operations involved in the convolution layers, no padding func- 

ion is used to compute the convolutional sum, and this produces 

 slight change in the output shape of every convolutional layer. 

ach convolutional layer is strengthened with an l 2 -norm kernel 

egularizer (KR) to avoid overfitting the classification model by ap- 

lying a penalty on the layer’s kernel. The first convolutional layer 

mploys a kernel size of 3 × 3 × 3 voxels with a filter dimension of 

6, KR factor of 10 −3 and its output shape is 179 × 215 × 176 × 16 .

he output from the first convolution layer is fed to the first max- 

ooling layer which utilizes a kernel size of 3 × 3 × 3 units for 

eshaping the MRI data to 59 × 71 × 59 × 16 . This downsampled 

ersion is inputted to the second convolutional layer, which uti- 

izes a kernel size of 5 × 5 × 5 units with a size of 32 output fil-

ers, KR factor of 10 −4 and its output shape is 55 × 67 × 55 × 32 .

he output of the second convolution layer is sent to the second 

ax-pooling layer with a kernel size of 4 × 4 × 4 units, which 

ownsamples the MRI data again to produce an output shape of 

3 × 16 × 13 × 32 . The output from the second max-pooling 

ayer is sent to the third and last 3D convolutional layer, which 

mploys a kernel size of 7 × 7 × 7 units, KR factor of 10 −5 and 

lters of 64 dimensions, while the output shape of the third con- 
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Fig. 7. Illustration of JD-CNN architecture for AD/HC classification. The architecture consists of two parts (i) 3D CNN layers (ii) 1D fully connected layers. 
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olutional layer reduces to 7 × 10 × 7 × 64 . This output is even- 

ually pushed to the last 3D max-pooling layer with a kernel size 

f 5 × 5 × 5 units, which downsamples the MRI data further 

nd after a successful max-pooling operation, its output shape be- 

omes 1 × 2 × 1 × 64 . In order to incorporate the fully con- 

ected dense layers in the proposed architecture, it is necessary to 

tilize a flattened layer to convert four-dimensional MRI data to 

 one-dimensional shape, so that it can be fed to a dense layer, 

hich is ultimately used for classification purposes. Hence, a flat- 

ened layer is placed after the third max-pooling layer and it flat- 

ens the MRI data to a one-dimensional space with output dimen- 

ions of 128 units. Subsequently, this flattened layer is fully con- 

ected to the dense layer, and it consists of 16 units. In addition, 

ike convolutional layers, this layer also utilizes the reLU activation 

unction. The last layer of the proposed architecture is the output 

ayer which provides a class label for each MRI image. The output 

hape of the dense layer is 16 units, which also suggests that the 

umber of units utilized in the dense layer is 16. It is activated by 

 sigmoid function (ς ) and consists of 2 units. This layer generates 

inary class labels as output to classify AD versus HC samples. The 

otal number of trainable parameters in the proposed architecture 

s 796,106. 

. Experiment results 

The experimental performance of the proposed algorithm is an- 

lyzed in this section. The algorithm’s AD classification behavior is 

valuated in terms of validation performance, -fold validation per- 

ormance and test performance. 

.1. Evaluation parameters 

The proposed model is evaluated to classify AD vs. HC subjects. 

he performance of the algorithm is assessed using four evalua- 

ion parameters, namely classification accuracy (ACC), sensitivity 

SEN), specificity (SPE) and area under receiver operating charac- 

eristics (ROC) curve (AUC). ACC, SEN and SPE are defined by Eqs. 

8) , (9) and (10) respectively. 

CC = 

T pos + T neg 

T pos + T neg + F pos + F neg 
(8) 

EN = 

T pos 

T pos + F neg 
(9) 
9 
P E = 

T neg 

T neg + F pos 
(10) 

here T pos , T neg , F pos and F neg represent true positive, true negative, 

alse positive and false negative respectively. To compute AUC, we 

rst identify all possible pairs of SEN and 1-SPE by changing the 

iscretizing threshold, which is applied on the classification scores. 

he total number of thresholds is 200. 

.2. Analysis pertaining to validation performance 

The validation performance of the proposed JD-CNN algorithm 

s computed by varying the learning rate (LR) from 10 −6 to 55 ×
0 −4 with an increment of 5 × 10 −4 and the corresponding per- 

ormances are shown in Fig. 8 (a) ∼Fig. 8 (m) respectively. The val- 

dation performance corresponding to each LR is recorded up to 

00 epochs in search of maximum values of evaluation parameters 

o demonstrate the optimum performance of JD-CNN. The perfor- 

ance points which indicate maximum values of classification ac- 

uracy are termed as best performance points (BPPs). In case there 

s a tie between two epochs for selection of a BPP in terms of val-

dation ACC then the epoch with higher validation AUC is selected. 

he performance points which do not exhibit any change anymore 

nd become steady are termed as stable performance points (SPPs). 

The selection of suitable LR is very important to achieve an ex- 

eptional learning performance of JD-CNN because the optimiza- 

ion process may be confined to local minimum values if a smaller 

R is selected. Similarly, a larger LR may be responsible for increas- 

ng loss values. Hence, a suitable and optimal LR value should be 

elected to ensure the high performance of a classifier. The BPPs 

orresponding to LR are identified and recorded as shown in Fig. 8 . 

ubsequently, these BPPs are plotted against each LR as shown in 

ig. 9 . This plot enables us to identify and select suitable LRs to 

ompute the optimum test performance of JD-CNN. 

Fig. 9 reveals that the BPP in terms of validation ACC is achieved 

t LR = 15 × 10 −4 . At this LR, the validation ACC, validation AUC, 

alidation SEN and validation SPE exhibited a high value of 97.96, 

8.96, 98.96, and 97.92 respectively. In the case of LR = 15 × 10 −4 , 

he BPP is achieved at epoch number 18 . The model weights corre- 

ponding to this epoch are stored to evaluate the test performance. 

he validation ACC of the proposed JD-CNN for LR = 15 × 10 −4 be- 

omes steady and stable at epoch number 20 and beyond as shown 

n Fig. 8 (d). Hence, the SPPs have a span over the epoch number 

0 to 100. 
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Fig. 8. Illustration of the proposed JD-CNN validation performance at different values of LRs. (a) ∼(m) exhibit the performance by varying LR from 10 −6 to 55 × 10 −4 with 

an increment of 5 × 10 −4 respectively. The highlighted dotted circle contains the BPP points and dotted curly braces indicates the SPP region. 
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.3. Analysis pertaining to 15-fold cross-validation 

The validation performance may be influenced by the selection 

f training, validation and testing dataset samples. The reason be- 

ind the variation in the validation performance is the involvement 

f variance during the dataset splitting process. To overcome the 

ffect of variance over the performance of the proposed model, 

e computed 15-fold cross-validation. The 15-fold cross-validation 

as evaluated 100 times and then averaged the performance val- 
10 
es to reduce the impact of random splits. The algorithm is run 

or 100 epochs against each fold and the performance values cor- 

esponding to the best validation ACC are stored. 

Moreover, the 15-fold cross-validation was computed to identify 

he optimal LR by varying it from 10 −6 to 55 × 10 −4 with an incre- 

ent of 5 × 10 −4 as detailed in Table 2 . The best 15-fold cross- 

alidation results are achieved at LR = 15 × 10 −4 , which validates 

ur initial selection of LR during the evaluation of the validation 

erformance given in section 5.2. 
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Fig. 9. Illustration of variations in validation performance with respect to learning 

rates. Each percentage indicates the specific epoch performance corresponding to 

the best validation accuracy selected among 100 epochs. 

TABLE 2 

15-Fold cross validation performance for sMRI 

data of ADNI-1 by varying learning rate (LR). 

LR ( 10 −4 ) ACC SEN SPE AUC 

0.01 87.24 86.90 86.97 88.01 

5 94.69 95.19 94.15 96.14 

10 95.08 95.82 93.79 96.95 

15 95.42 96.13 94.17 97.26 

20 93.28 94.11 92.82 95.59 

25 89.50 89.72 88.31 91.24 

30 93.34 94.04 92.91 95.72 

35 93.47 94.46 93.10 95.84 

40 94.62 94.96 93.53 96.48 

45 93.89 93.91 92.80 95.26 

50 90.34 90.48 89.69 92.82 

55 92.23 92.52 91.06 94.32 
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The 15-fold cross-validation ACCs are smaller than the corre- 

ponding validation ACCs depicted in Fig. 8 , which are obtained 

rom random manual dataset split into training and validation 

amples. The decrease in 15-fold validation ACCs suggests that 

here is a variance when splitting the dataset into training, vali- 

ation, and testing subsets. It is also important to note that the 

alues of the JD-CNN’s 15-fold cross-validation ACCs are still rea- 

onably high for an acceptable AD/HC classification scheme. 

.4. Effectiveness of Jacobian domain classification 

The test set contains 38 samples and is separate from the train- 

ng and validation sets. The algorithm is trained on the training 

et, and the best model is saved according to validation ACC at LR 

 15 × 10 −4 . Then, the saved model is utilized to compute the per- 

ormance component of the test set. The proposed JD-CNN exploits 

he inherited property of JD which quantifies the brain’s volumet- 

ic changes in terms of shrinkage or expansiveness [ 8 , 34 ]. These

ypes of volumetric transitions are key to identifying the brain at- 

ophy patterns behind the development of AD. This is the main 

eason for the superlative performance of the proposed JD-CNN 

gainst traditional CNN classifiers, which are normally trained in 

he spatial domain (SD). To illustrate the supremacy of the pro- 

osed JD-CNN, we remove the Jacobian determinant map genera- 

ion module from the proposed framework and re-train the same 
TABLE 3 

Direct performance comparison using sMRI data of ADNI-1

Reference Methodology Sampl

SD-CNN Spatial domain-based CNN 154 + 84 

Lian et al. [20] Hierarchical CNN 154 + 84 

Zhu et al. [7] Attention-based CNN 154 + 84 

JD-CNN Jacobian map feed CNN 154 + 84 

11 
NN framework, but this time without employing JD features and 

enote this implementation as SD-CNN. 

The dual attention multi-instance deep learning for the AD di- 

gnosis framework [7] and hierarchical fully convolutional network 

20] were reproduced for direct comparison purposes. The size of 

ach patch was selected as 25 × 25 × 25 voxels for both these stud- 

es. The test performance of Zhu et al. [7] , Lian et al. [20] , SD-CNN

nd JD-CNN is compared and illustrated in Table 3 . It is evident 

rom Table 3 that all four performance parameters prove the supe- 

iority of JD-CNN over the competing classifiers. Even though the 

ork of Zhu et al. [7] is not an end-to-end unified framework and 

equires the identification of patch location proposals separately, 

ts classification is not superior to JD-CNN. 

. Discussion 

In this paper, we proposed a novel three-dimensional Jacobean 

omain convolutional neural network (JD-CNN) to diagnose AD 

ubjects. In comparison with other previously reported CNN-based 

D/HC classification frameworks, reported in Table 4 , which uti- 

ize spatial domain images as input to train the classifier, our pro- 

osed JD-CNN algorithm utilizes CNN architecture in the Jacobian 

omain and provides a quantitative measure for localized volume 

hange. The localized volume change is one of the quantification 

arameters for diagnosing AD [40] . Unlike the conventional classi- 

cation frameworks, which only depend on convolutional network 

 7 , 20 , 22 , 35 ] the JD-CNN exploits the inherent property of Jaco-

ian determinant to compute voxel-level morphological statistics. 

hese statistics alongside the convolutional network characterize 

he brain atrophy caused by dementia. Additionally, different form 

xisting AD classifiers [ 18 , 21 ], the JD-CNN is basically a whole

rain subject-level classifier and does not necessitate feature ex- 

raction requirements from any explicit pre-determined informa- 

ive brain region or patch. This is specifically handy in practice to 

implify the CAD process. This fusion of the Jacobian determinant 

ap with deep learning results in a strong classifier that classi- 

es the disease samples and has evaluation parameters with high 

alues. 

We have briefly summarized previously reported state-of-the 

rt studies for AD diagnosis in Table 5 . This comparison employs 

 different number of subjects and the selection criteria for the 

nclusion of specific images is diverse. In addition, not all algo- 

ithms use identical subjects and the selected number of train- 

ng, validation and testing subsets varies as well [19] . Due to the 

forementioned obstacles, Liu et al. [17] and Lian et al. [20] also 

ompared their frameworks with a different number of subjects. 

onsequently, a similar comparative methodology is adopted for a 

ough comparison. A rough comparison of JD-CNN with the state- 

f-the-art schemes reported in Table 5 shows that our proposed 

D-CNN scheme achieves a superior classification performance. 

We exploited baseline T1-weighted ADNI-1 sMRIs for train- 

ng, validation and testing of classification frameworks reported 

n Table 3 . To further investigate the generalization ability of the 

D-CNN, we acquired additional sMRI samples from the baseline 

DNI-2 datasets that satisfied the same three data selection condi- 

ions, which were described for ADNI-1 in the section 3.1. We per- 

ormed 15-fold cross-validation to develop comparative study for 
 for AD classification. 

e size (HC + AD) ACC SEN SPE AUC 

87.92 90.64 85.49 88.92 

90.76 89.24 92.81 94.32 

94.54 93.97 95.16 96.27 

96.61 97.83 95.92 98.34 
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TABLE 4 

a brief description of the previously reported state-of-the-art algorithms using smri data of adni for ad classification. 

Reference Methodology Sample size (HC + AD) ACC SEN SPE AUC 

Liu et al. [21] Landmark based CNN 404 + 452 78.34 47.37 83.26 79.04 

Lin et al. [22] Patch based extreme learning machine 229 + 188 79.90 84.00 74.80 86.10 

Li et al. [37] Graph convolutional network 226 + 186 84.40 83.60 85.90 84.30 

Liu et al. [35] . Hippocampus based multi-model CNN 119 + 97 88.90 86.60 90.80 92.50 

Adeli et al. [38] Linear discriminant analysis 101 + 93 92.10 – – 94.86 

Liu et al. [17] SVM based classification 128 + 97 93.06 94.84 90.49 95.79 

Liu et al. [39] Multiple ensemble SVM 128 + 97 93.83 92.78 95.69 94.16 

Chen et al. [5] CNN integrated sparse regression 417 + 347 95.32 91.18 93.94 −
JD-CNN (Proposed) Jacobian map feed CNN 154 + 84 96.61 97.83 95.92 98.34 

TABLE 5 

15-Fold cross validation performance for using sMRI data of ADNI-2. 

Reference Methodology Sample size (HC + AD) ACC SEN SPE AUC 

SD-CNN Spatial domain-based CNN 100 + 94 85.96 87.72 84.21 87.90 

Lian et al. [20] Hierarchical CNN 100 + 94 89.91 89.04 90.79 93.44 

Zhu et al. [7] Attention-based CNN 100 + 94 92.63 91.96 93.30 94.67 

JD-CNN Jacobian map feed CNN 100 + 94 9 4 .20 94.64 93.75 96.66 
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he SD-CNN, Lian et al. [20] , Zhu et al. [7] and JD-CNN. A learning

ate of 15 × 10 −4 was selected for the SD-CNN and JD-CNN exper- 

ments. The demographic information of the 194 studied subjects 

rom ADNI-2 is reported in Table S-III in the supplementary ma- 

erial, while the detailed comparative classification results are pre- 

ented in Table 5 . It is evident that our proposed JD-CNN classifier 

till outperforms the competing techniques. Moreover, the 15-fold 

ross-validation results of ADNI-2 are comparable with the ADNI- 

 (i.e., Table 3 ). We can observe that the proposed classifier per- 

ormed somewhat better in case of ADNI-1. The possible reason 

ies in the fact that the studied ADNI-2 samples have a slightly 

arger MMSE group difference than the ADNI-2. The classification 

esults of additional dataset (i.e., ADNI-2) validates the generaliza- 

ion ability of the proposed JD-CNN in AD diagnosis. 

. Conclusion 

In this paper, we proposed the transformed domain JD-CNN 

lassification framework, exploiting the Jacobian domain in con- 

unction with the convolutional neural network for AD diagnosis. 

he proposed JD-CNN algorithm computes the whole-brain Jaco- 

ian features that identify alterations in the brain’s volumetric tis- 

ues. This framework successfully overcomes the limitations of ex- 

sting patch-based and ROI-based models, which lack spatially cor- 

elated awareness. Moreover, these models necessitate the correct 

dentification and localization of the relevant patches and ROIs as 

ell. On the other hand, the proposed JD-CNN calculates whole- 

rain Jacobian maps to transform the brain’s volumetric variations 

nto meaningful transitions which are then exploited to identify 

D patterns and is independent of any patches and ROI extraction. 

o the best of our knowledge, this is the first time that the CNN

as been trained in the Jacobian domain to classify AD subjects. 

he performance of the proposed method was evaluated on sMRI 

ata collected from the ADNI database. The experiment results of 

ur proposed method were compared with state-of-the-art classi- 

cation algorithms, which highlighted the superior performance of 

D-CNN for AD/HC classification. 

Although the proposed framework demonstrated exceptional 

lassification performance, its performance and generalization ca- 

acity may be further enhanced in the future by countering the 

ollowing limitations and challenges. First, we utilized the l 2 -norm 

ernel regularizer (KR) at each CNN layer to improve the general- 

zation of the model. We could potentially modify our framework 

y introducing a network pruning strategy with the help of drop- 

ff layers, which might further improve the generalization capabil- 
12 
ty and reduce the danger of overfitting. Secondly, the utilization 

f JD features could be acting as a bottleneck during the network 

raining stage, therefore, it is imperative to compute the JD features 

n a data-driven manner by combining the generator of JD features 

nd the network into a unified framework. Thirdly, in our current 

ethodology, the generated JD map may also contain changes as- 

ociated with differences in registration, i.e., due to shearing and 

caling operations. It may be a promising direction to further de- 

elop a module which quantitatively estimates and eradicates such 

ifferences. Fourth, we only employ sMRI modality for AD diagno- 

is, while disregarding the enormous advantages gained by a mul- 

imodal study, such as combining sMRI and PET images. In the fu- 

ure, we may investigate the performance of such a multimodal 

ramework. Fifth, we have not considered numerous confounding 

actors (e.g., gender, age, education, and clinical scores) of the stud- 

ed subjects. As future work, we may exploit these confounding 

actors to develop a joint learning classifier. Moreover, further stud- 

es may utilize the concept of transfer learning to predict subjects 

uffering from mild cognitive impairment and prodromal AD stages 

y employing the gains of the proposed JD-CNN classifier. 
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